Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)=\(\frac{a+b+c}{2.\left(a+b+c\right)}\)nghĩa là mẫu số gấp đôi tử số\(\Rightarrow\)\(\frac{a+b+c}{2.\left(a+b+c\right)}\)=\(\frac{1}{2}\)\(\Rightarrow\)\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không là số tự nhiên
thêm chữ"với a,b,c là số tự nhiên" trước chữ "ta có" nha
Với a,b,c dương, ta có:
a/a+b > a/a+b+c
b/b+c > b/a+b+c
c/c+a > c/a+b+c
=> A > a/a+b+c + b/a+b+c + c/a+b+c => A>1. (1)
Ta lại có
A = a/a+b + b/b+c + c/c+a
= a+b-b/a+b + b+c-c/b+c + c+a-a/c+a
= 1-b/a+b + 1-c/b+c + 1-a/c+a
= 3-(b/a+b + c/b+c + a/c+a) = 3-B
Tương tự phần chứng minh trên, ta có
b/a+b > b/a+b+c
c/b+c > c/a+b+c
a/a+c > a/a+b+c
=> B > b/a+b+c + c/a+b+c + a/a+b+c => B>1
mà A = 3-B
=> A < 2 (2)
Từ (1) và (2) => 1<A<2
Mà không có số tự nhiên nào ở giữa 1 và 2 => A không là số tự nhiên
Đặt a = 5k + 3; b = 5q + 3; c = 5x + 2
=> a + b + c = (5k + 3) + (5q + 3) + (5x + 2)
=> a + b + c = (5k + 5q + 5x) + (3 + 3 + 2)
=> a + b + c = 5(k + q + x) + 8 không chia hết cho 5 (ĐPCM)
Tính chất tỉ số:
Cho x, y, z > 0; x/y < 1 ta có: x / y < (x+z) / (y+z) (*)
cm:
(*) <=> x(y+z) < y(x+z) <=> xy+xz < yx+yz <=> xz < yz <=> x < y đúng do gt x < y
- - - - -
với các số a, b, c ta có: a < a+b ; b < b+c ; c < c+a
=> a/(a+b) < 1 ; b/(b+c) < 1 ; c/(c+a) < 1; ad (*) ta có:
A = a/(a+b) + b/(b+c) + c/(c+a) < (a+c)/(a+b+c) + (b+a)/(b+c+a) + (c+b)/(c+a+b)
=> A < 2(a+b+c)/(a+b+c) = 2
mặt khác ta có:
A = a/(a+b) + b/(b+c) + c/(c+a) > a/(a+b+c) + b/(b+c+a) + c/(c+a+b)
=> A > (a+b+c)/(a+b+c) = 1
Tóm lại ta có: 1 < A < 2 => A không là số tự nhiên
Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath
a là bội của b => a = b.q ( q là số tự nhiên khác 0) (1)
b là bôị của c => b = c.t ( t là số tự nhiên khác 0) (2)
Thay (2) vào (1) ta có: a = c.t.q => a chia hết cho c
=> a là bội của c (đpcm)
Theo đề bài
a=m.b (m là số nguyên)
b=n.c (n số nguyên)
=> a=m.n.c
Do m,n là số nguyên => m.n là số nguyên => a là bội của c
Ta có \(12=3.4,\left(3,4\right)=1\)nên ta sẽ chứng minh tích các hiệu của hai trông bốn số đã cho chia hết cho \(4\)và \(3\).
- Chứng minh chia hết cho \(4\):
+ Nếu có hai số nào trong bốn số có cùng số dư khi chia cho \(4\), giả sử là \(a,b\)thì \(a-b\)chia hết cho \(4\).
+ Nếu không có hai số nào trong bốn số đã cho có cùng số dư khi chia cho \(4\)thì ta có thể giả sử số dư của các số khi chia cho \(4\)lần lượt là \(3,2,1,0\).
Khi đó \(a-c⋮2,b-d⋮2\Rightarrow\left(a-c\right)\left(b-d\right)⋮4\).
Ta có đpcm.
- Chứng minh chia hết cho \(3\):
Trong bốn số đã cho chắc chắn có ít nhất hai trong bốn số đó có cùng số dư khi chia cho \(3\), giả sử là \(a,b\)thì \(a-b⋮3\).
Ta có đpcm.