\(a^2+b^2+c^2< 2(ab+bc+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2019

Theo bất đẳng thức tam giác:

\(\hept{\begin{cases}a< b+c\\b< a+c\\c< a+b\end{cases}}\Rightarrow\hept{\begin{cases}a^2< ab+ac\\b^2< ab+bc\\c^2< ac+bc\end{cases}}\)

Cộng các bất đẳng thức lại với nhau có điều cần CM

19 tháng 8 2016

Vì a,b,c là độ dài ba cạnh của một tam giác nên ta có : 

\(\begin{cases}a+b>c\\c+a>b\\b+c>a\end{cases}\) \(\Leftrightarrow\begin{cases}ac+bc>c^2\\ab+bc>b^2\\ab+ac>a^2\end{cases}\)  \(\Rightarrow a^2+b^2+c^2>2\left(ab+bc+ac\right)\)

30 tháng 3 2017

nếu là \(a^2+b^2+c^2< 2\) thi minh lam dc                                    

6 tháng 1 2017

a=12 b=1 c=4

k đi

2 tháng 5 2019

\(a+b+c=0\Rightarrow\hept{\begin{cases}a=-b-c\\b=-a-c\\c=-a-b\end{cases}}\)

\(ab+bc+ac=\left(-b-c\right).b+\left(-a-c\right).c+\left(-a-b\right).a\)

\(=-\left(a^2+b^2+c^2\right)-\left(ab+bc+ac\right)\)

\(\Rightarrow2.\left(ab+bc+ac\right)=-\left(a^2+b^2+c^2\right)\le0\)

\(\Rightarrow ab+bc+ac\le0\)(đpcm)

11 tháng 5 2019

Boul đẹp trai_tán gái đổ 100%:mik có cách khác nè:3

\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

Do \(a^2+b^2+c^2\ge0\Rightarrow2\left(ab+bc+ca\right)\le0\Rightarrowđpcm\)