Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:
\(\left(a+b\right)^2\ge0\)
\(\Rightarrow a^2+2ab+b^2\ge0\)
\(\Rightarrow a^2+b^2\ge2ab\) (1).
\(\left(b+c\right)^2\ge0\)
\(\Rightarrow b^2+2bc+c^2\ge0\)
\(\Rightarrow b^2+c^2\ge2bc\) (2).
\(\left(c+a\right)^2\ge0\)
\(\Rightarrow c^2+2ca+a^2\ge0\)
\(\Rightarrow c^2+a^2\ge2ac\) (3).
Cộng theo vế (1), (2) và (3) ta được:
\(a^2+b^2+b^2+c^2+a^2+c^2\ge2ab+2bc+2ca\)
\(\Rightarrow2a^2+2b^2+2c^2\ge2.\left(ab+bc+ca\right)\)
\(\Rightarrow2.\left(a^2+b^2+c^2\right)\ge2.\left(ab+bc+ca\right)\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\) (*).
Vì a, b, c là độ dài ba cạnh của tam giác (gt).
\(\left\{{}\begin{matrix}a+b>c\\b+c>a\\c+a>b\end{matrix}\right.\) (theo bất đẳng thức trong tam giác).
=> \(\left\{{}\begin{matrix}ac+bc>c^2\left(4\right)\\ab+ac>a^2\left(5\right)\\bc+ab>b^2\left(6\right)\end{matrix}\right.\)
Cộng theo vế (4), (5) và (6) ta được:
\(ac+bc+ab+ac+bc+ab>a^2+b^2+c^2\)
\(\Rightarrow2ab+2bc+2ac>a^2+b^2+c^2\)
\(\Rightarrow2.\left(ab+bc+ca\right)>a^2+b^2+c^2\) (**).
Từ (*) và (**) => \(ab+bc+ca\le a^2+b^2+c^2< 2.\left(ab+bc+ca\right)\left(đpcm\right).\)
Chúc bạn học tốt!
Theo BĐTBĐT tam giác ta có:
a<b+c
=>a2<ab+ac
b<c+a
=>b2<bc+ba
c<a+b
=>c2<ca+cb
Cộng vế với vế 3 BĐT trên ta được:
a2+b2+c2<2(ab+bc+ca)(1)
Ta có (a−b)2+(b−c)2+(c−a)2≥0 với mọi a,b,c là độ dài 3 cạnh của tam giác
<=>a2−2ab+b2+b2−2bc+c2+c2−2ca+a2≥0
<=>2(a2+b2+c2)≥2(ab+bc+ca)
<=>ab+bc+ca≤a2+b2+c2(2)
Dấu = xảy ra khi a=b=c<=> tam giác đó đều
(1),(2)=>đpcm

bằng nhau trong trường hợp tam giác đều bạn tự làm nha còn bé hơn thì trước tiên viết 3 bất đẳng thức của tam giác sau đó cho 1 giả sử để chứng minh hoặc là biến đổi bất đẳng thức của tam giác giờ mình lười làm lắm hướng dẫn như vậy thôi

Giải
Kẻ đoạn thẳng AM. Xét tam giác MAC. Chứng minh tương tự như bài 1.4 ta có MN < a, trong đó a là đoạn lớn nhất trong hai đoạn thẳng MA và MC. Nếu ta chứng minh được
MA < AC và MC < AC thì sẽ suy ra được a < AC, từ đó có MN < AC.
Trong tam giác ABC có AB ≤ AC, M ∈ BC (M ≠ B, M ≠ C); Chứng minh tương tự bài 1.4, ta có AM < AC. Mặt khác MC < BC ≤ CA. Vậy a < AC, suy ra MN < AC.
bạn ơi cách này trong phần giải đằng sau sách bài tập toán 7 mà !!!

B A C M N
Áp dụng bất đẳng thức tam giác cho tam giác CMN ta có:
\(CN+CM>MN\)
Vì N nằm trên BC nên CN<BC
Vì M nằm trên AC nên CM<AC
=>\(BC+AC>CM+CN>MN\)
Đến đây tự giải tiếp thì dễ rồi

Giả sử \(0< a\le c\)\(\Rightarrow a^2\le c^2\)
\(a^2+b^2>5c^2\)
\(\Rightarrow a^2+b^2>5a^2\)
\(\Rightarrow b^2>4a^2\)
\(\Rightarrow b>2a\) (1)
\(c^2\ge a^2\Rightarrow c^2+b^2\ge a^2+b^2>5c^2\)
\(\Rightarrow c^2+b^2>5c^2\)\(\Rightarrow b^2>4c^2\Rightarrow b>2c\) (2)
Cộng (1) và (2) ta được:
\(2b>2a+2c\Rightarrow b>a+c\) ( vô lý )
\(\Rightarrow c< a\)
Chứng minh tương tự : \(c< b\)
Do \(\hept{\begin{cases}c< a\\c< b\end{cases}\Leftrightarrow\hept{\begin{cases}AB< BC\\AB< AC\end{cases}}}\Rightarrow\hept{\begin{cases}\widehat{C}< \widehat{A}\\\widehat{C}< \widehat{B}\end{cases}}\)
\(\Rightarrow2\widehat{C}< \widehat{A}+\widehat{B}\)
\(\Rightarrow3\widehat{C}< \widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{C}< 60^o\) (đpcm)