\(\le\) a^2+b^2+c^2 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2020

Ta có:

\(\left(a+b\right)^2\ge0\)

\(\Rightarrow a^2+2ab+b^2\ge0\)

\(\Rightarrow a^2+b^2\ge2ab\) (1).

\(\left(b+c\right)^2\ge0\)

\(\Rightarrow b^2+2bc+c^2\ge0\)

\(\Rightarrow b^2+c^2\ge2bc\) (2).

\(\left(c+a\right)^2\ge0\)

\(\Rightarrow c^2+2ca+a^2\ge0\)

\(\Rightarrow c^2+a^2\ge2ac\) (3).

Cộng theo vế (1), (2) và (3) ta được:

\(a^2+b^2+b^2+c^2+a^2+c^2\ge2ab+2bc+2ca\)

\(\Rightarrow2a^2+2b^2+2c^2\ge2.\left(ab+bc+ca\right)\)

\(\Rightarrow2.\left(a^2+b^2+c^2\right)\ge2.\left(ab+bc+ca\right)\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\) (*).

Vì a, b, c là độ dài ba cạnh của tam giác (gt).

\(\left\{{}\begin{matrix}a+b>c\\b+c>a\\c+a>b\end{matrix}\right.\) (theo bất đẳng thức trong tam giác).

=> \(\left\{{}\begin{matrix}ac+bc>c^2\left(4\right)\\ab+ac>a^2\left(5\right)\\bc+ab>b^2\left(6\right)\end{matrix}\right.\)

Cộng theo vế (4), (5) và (6) ta được:

\(ac+bc+ab+ac+bc+ab>a^2+b^2+c^2\)

\(\Rightarrow2ab+2bc+2ac>a^2+b^2+c^2\)

\(\Rightarrow2.\left(ab+bc+ca\right)>a^2+b^2+c^2\) (**).

Từ (*) và (**) => \(ab+bc+ca\le a^2+b^2+c^2< 2.\left(ab+bc+ca\right)\left(đpcm\right).\)

Chúc bạn học tốt!

11 tháng 2 2020

Theo BĐTBĐT tam giác ta có:
a<b+c
=>a2<ab+ac
b<c+a
=>b2<bc+ba
c<a+b
=>c2<ca+cb
Cộng vế với vế 3 BĐT trên ta được:
a2+b2+c2<2(ab+bc+ca)(1)

Ta có (a−b)2+(b−c)2+(c−a)2≥0 với mọi a,b,c là độ dài 3 cạnh của tam giác
<=>a2−2ab+b2+b2−2bc+c2+c2−2ca+a2≥0
<=>2(a2+b2+c2)≥2(ab+bc+ca)
<=>ab+bc+ca≤a2+b2+c2(2)
Dấu = xảy ra khi a=b=c<=> tam giác đó đều
(1),(2)=>đpcm

17 tháng 4 2016

bằng nhau trong trường hợp tam giác đều bạn tự làm nha còn bé hơn thì trước tiên viết 3 bất đẳng thức của tam giác sau đó cho 1 giả sử để chứng minh hoặc là biến đổi bất đẳng thức của tam giác giờ mình lười làm lắm hướng dẫn như vậy thôi

23 tháng 4 2016

Từ đề => a,b,c \(\ge\)0 . Ta lại có :\(ab+ac+bc\le a^2+b^2+c^2\) 

=> \(3\left(ab+ac+bc\right)\le\left(a+b+c\right)^2\) luôn đúng với mọi a,b,c \(\ge\) 0

=> dpcm

Dấu "=" xảy ra khi a=b=c hay khi  tam giác ABC đều 

4 tháng 2 2018

Giải

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Kẻ đoạn thẳng AM. Xét tam giác MAC. Chứng minh tương tự như bài 1.4 ta có MN < a, trong đó a là đoạn lớn nhất trong hai đoạn thẳng MA và MC. Nếu ta chứng minh được

MA < AC và MC < AC thì sẽ suy ra được a < AC, từ đó có MN < AC.

Trong tam giác ABC có AB ≤ AC, M ∈ BC (M ≠ B, M ≠ C); Chứng minh tương tự bài 1.4, ta có AM < AC. Mặt khác MC < BC ≤ CA. Vậy a < AC, suy ra MN < AC.

19 tháng 2 2019

bạn ơi cách này trong phần giải đằng sau sách bài tập toán 7 mà !!!

4 tháng 3 2016

B A C M N

Áp dụng bất đẳng thức tam giác cho tam giác CMN ta có:

\(CN+CM>MN\)

Vì N nằm trên BC nên CN<BC

Vì M nằm trên AC nên CM<AC

=>\(BC+AC>CM+CN>MN\)

Đến đây tự giải tiếp thì dễ rồi

6 tháng 4 2019

Giả sử \(0< a\le c\)\(\Rightarrow a^2\le c^2\)

 \(a^2+b^2>5c^2\)

\(\Rightarrow a^2+b^2>5a^2\)

\(\Rightarrow b^2>4a^2\)

\(\Rightarrow b>2a\)   (1)

           \(c^2\ge a^2\Rightarrow c^2+b^2\ge a^2+b^2>5c^2\)

                              \(\Rightarrow c^2+b^2>5c^2\)\(\Rightarrow b^2>4c^2\Rightarrow b>2c\)         (2)

Cộng (1) và (2) ta được:

  \(2b>2a+2c\Rightarrow b>a+c\) ( vô lý )

\(\Rightarrow c< a\)

 Chứng minh tương tự :  \(c< b\)

Do \(\hept{\begin{cases}c< a\\c< b\end{cases}\Leftrightarrow\hept{\begin{cases}AB< BC\\AB< AC\end{cases}}}\Rightarrow\hept{\begin{cases}\widehat{C}< \widehat{A}\\\widehat{C}< \widehat{B}\end{cases}}\)

\(\Rightarrow2\widehat{C}< \widehat{A}+\widehat{B}\)

\(\Rightarrow3\widehat{C}< \widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(\Rightarrow\widehat{C}< 60^o\) (đpcm)

6 tháng 4 2019

cảm ơn bn nha!