Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Anh Phương vào link này tham khảo nhé :
Câu hỏi của Hồ Minh Phi - Toán lớp 9 | Học trực tuyến
Nhớ không nhầm mọi khi đi thi cho đoạn kiểu này và có dấu ''='' ví dụ như :
\(-1\le a,b,c\le2\) thì không cần não nghĩ ngay đến \(a+1,a-2\) (tương tự với b,c)
Trong TH không có dạng cơ bản để áp dụng BĐT thông thường.
Do \(a,b,c\in\left[-1;2\right]\Rightarrow\left(a+1\right)\left(a-2\right)\le0\Rightarrow a^2\le a+2\)
Tương tự:
\(b^2\le b+2;c^2\le c+2\Rightarrow a^2+b^2+c^2\le a+b+c+6\)
\(\Rightarrow a+b+c\ge0\) vì \(a^2+b^2+c^2=6\)
Trình bày khác Cool Kid xíu!
\(a+b+c=\Sigma_{cyc}\left(a+1\right)\left(2-a\right)+\Sigma_{cyc}\left(a^2-2\right)\)
\(=\Sigma_{cyc}\left(a+1\right)\left(2-a\right)\ge0\) vì \(a,b,c\in\left[-1;2\right]\)
Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(-1;-1;2\right)\) và các hoán vị.
\(a+b+c\ge0\)
\(\Leftrightarrow a+b+c-a^2-b^2-c^2+6\ge0\)
\(\Leftrightarrow\left(a^2-a-2\right)+\left(b^2-b-2\right)+\left(c^2-c-2\right)\le0\)
\(\Leftrightarrow\left(a-2\right)\left(a+1\right)+\left(b-2\right)\left(b+1\right)+\left(c-2\right)\left(c+1\right)\le0\)(1)
Mà a,b,cE[-1;2]=>\(\left\{{}\begin{matrix}a-2;b-2;c-2\le0\\a+1;b+1;c+1\ge0\end{matrix}\right.\)
=>(1) đúng =>đpcm
Gỉa thiết đã cho có thể viết lại thành
(a/2)2+(b/2)2+(c/2)2+2.a/2.b/2.c/2=1
Từ đó suy ra 0<a/2,b/2,c/2≤1.
Như vậy tồn tại A,B,Cthỏa A+B+C=πA+B+C=r và a/2=cosA,b/2=cosB,c/2=cosC.
Từ một BĐT cơ bản cosA+cosB+cosC≤3/2
ta có ngay a+b+c≤3
<=> a^2+b^2+c^2 =< 3^2 =< 9
ta có:\(0\le a\le3\Rightarrow a\left(a-3\right)\le0\)
\(\Rightarrow a^2-3a\le0\)
C/m tương tư ta đc: \(b^2-3b\le0\)
\(c^2-3c\le0\)
\(\Rightarrow a^2+b^2+c^2-3\left(a+b+c\right)\le0\)
\(\Leftrightarrow a^2+b^2+c^2\le3.4=12\) (vì a+b+c=4)
\(-1\le a;b;c\le2\)
\(\Rightarrow\left(a+1\right)\left(a-2\right)\le0\)
\(\Leftrightarrow a^2-a-2\le0\)
\(\Rightarrow a^2-2\le a\)
Tương tự ta có: \(b^2-2\le b\) ; \(c^2-2\le c\)
\(\Rightarrow a+b+c\ge a^2+b^2+c^2-6=0\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(-1;-1;2\right)\) và cách hoán vị
Cho a, b,c la cac so thuoc doan \(\left[-1;2\right]\) thoa man \(a^2+b^2+c^2=6\). CMR: \(a+b+c\ge0\)
Do \(-1\le a\le2\Rightarrow\left(a+1\right)\left(a-2\right)\le0\Leftrightarrow a^2-a-2\le0\)
Tương tự ta có: \(\left\{{}\begin{matrix}b^2-b-2\le0\\c^2-c-2\le0\end{matrix}\right.\)
Cộng vế với vế ta được:
\(a^2+b^2+c^2-\left(a+b+c\right)-6\le0\)
\(\Leftrightarrow-\left(a+b+c\right)\le0\)
\(\Leftrightarrow a+b+c\ge0\) (đpcm)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=-1\\c=-1\end{matrix}\right.\) và các hoán vị
-1<=a,b,c<= 2
=> đồng thời
(a+1)(a-2) <=0
(b+1)(b-2) <=0
(c+1)(c-2) <=0
Cộng lại ta có
+> a^2+b^2+c^2-(a+b+c)-6 <=0
=> a^2+b^2+c^2 <=6