K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2018

Đặt \(\hept{\begin{cases}a+b=x\\a+c=y\\b+c=z\end{cases}}\)

Do a+b+c = 1 \(\Leftrightarrow x+y+z=2\)

Ta có :

\(\text{Sima}\frac{a+bc}{b+c}=\text{Sima}\frac{a\left(a+b+c\right)+bc}{b+c}=\text{Sima}\frac{a^2+ab+ac+bc}{b+c}=\text{Sima}\frac{\left(a+b\right)\left(a+c\right)}{b+c}\)

\(=\text{Sima}\frac{xy}{z}=\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\)

Ta có : \(2\text{Sima}\frac{xy}{z}=\left(\frac{xy}{z}+\frac{xz}{y}\right)+\left(\frac{xy}{z}+\frac{yz}{x}\right)+\left(\frac{xz}{y}+\frac{yz}{x}\right)\)

\(\ge2x+2y+2z\)

\(\Rightarrow\text{Sima}\frac{xy}{z}\ge x+y+z=2\) hay \(\text{Sima}\frac{a+bc}{b+c}\ge2\)(đpcm)

19 tháng 5 2018

\(\sum\dfrac{a}{b^2+bc+c^2}\ge\dfrac{\left(a+b+c\right)^2}{ab^2+abc+ac^2+bc^2+abc+ba^2+ca^2+abc+cb^2}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}=\dfrac{a+b+c}{ab+bc+ac}\)

25 tháng 5 2018

Đúng rầu đấy

6 tháng 8 2020

Áp dụng bất đẳng thức Cauchy ta có

\(\frac{a}{a+1}=1-\frac{b}{b+1}+1-\frac{c}{c+1}=\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{2}{\sqrt{\left(b+1\right)\left(c+1\right)}}\)

tương tự ta có

 \(\frac{b}{b+1}\ge\frac{2}{\sqrt{\left(c+1\right)\left(a+1\right)}};\frac{c}{c+1}\ge\frac{2}{\sqrt{\left(a+1\right)\left(b+1\right)}}\)

khi đó ta được

\(\frac{ab}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{\left(c+1\right)\sqrt{\left(a+1\right)\left(b+1\right)}}\Rightarrow ab\ge\frac{4.\sqrt{\left(a+1\right)\left(b+1\right)}}{c+1}\)

Áp dụng tương tự ta được\(bc\ge\frac{4.\sqrt{\left(b+1\right)\left(c+1\right)}}{a+1};ca\ge\frac{4.\sqrt{\left(c+1\right)\left(a+1\right)}}{b+1}\)

Cộng theo vế các bất đẳng thức trên ta được 

\(ab+bc+ca\ge\frac{4.\sqrt{\left(a+1\right)\left(b+1\right)}}{c+1}+\frac{4.\sqrt{\left(b+1\right)\left(c+1\right)}}{a+1}+\frac{4.\sqrt{\left(c+1\right)\left(a+1\right)}}{b+1}\)

mặt khác theo bất đẳng thức Cauchy ta lại có

\(\frac{\sqrt{\left(a+1\right)\left(b+1\right)}}{c+1}+\frac{\sqrt{\left(b+1\right)\left(c+1\right)}}{a+1}+\frac{\sqrt{\left(c+1\right)\left(a+1\right)}}{b+1}\ge3\)

suy ra \(ab+bc+ca\ge12\)vậy bất đẳng thức được chứng minh 

đẳng thức xảy ra khi và chỉ khi \(a=b=c=2\)

7 tháng 12 2017

Chứng minh BĐT Phụ: \(a^5+b^5\ge a^4b+ab^4\)với \(a;b>0\)

\(\Rightarrow\frac{a^5+b^5}{ab\left(a+b\right)}\ge\frac{a^4b+ab^4}{ab\left(a+b\right)}=\frac{ab\left(a^3+b^3\right)}{ab\left(a+b\right)}=\frac{ab\left(a+b\right)\left(a^2-ab+b^2\right)}{ab\left(a+b\right)}=a^2-ab+b^2\)

Áp dụng ta có: \(VT\)(VẾ TRÁI)\(\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\)                       \(\left(1\right)\)

Xét: \(\left[2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\right]-\left[3\left(ab+bc+ca\right)-2\right]\)

\(=2\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)+2\)

\(=4\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)\)              (Do a2+b2+c2=1)                           \(\left(2\right)\)

Mà \(a^2+b^2+c^2\ge ab+bc+ca\)   Tự chứng minh                                                               \(\left(3\right)\)

Từ (1);(2) và (3) suy ra \(VT\ge3\left(ab+bc+ca\right)-2\)

Vậy \(\frac{a^5+b^5}{ab\left(a+b\right)}+\frac{b^5+c^5}{bc\left(b+c\right)}+\frac{c^5+a^5}{ca\left(c+a\right)}\ge3\left(ab+bc+ca\right)-2\)

31 tháng 1 2019

Ta có:\(\sqrt{abc}=a+b+c\ge3\sqrt[3]{abc}\)\(\Rightarrow\left(\sqrt{abc}\right)^6\ge\left(3\sqrt[3]{abc}\right)^6\Leftrightarrow\left(abc\right)^3\ge3^6\left(abc\right)^2\)

\(\Leftrightarrow abc\ge3^6\)(1).Lại có:\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\)

BĐT cần chứng minh tương đương với:\(3\sqrt[3]{\left(abc\right)^2}\ge9\sqrt{abc}\Leftrightarrow\sqrt[3]{\left(abc\right)^2}\ge3\sqrt{abc}\)

\(\Leftrightarrow\left(\sqrt[3]{\left(abc\right)^2}\right)^6\ge\left(3\sqrt{abc}\right)^6\)\(\Leftrightarrow\left(abc\right)^4\ge3^6\left(abc\right)^3\Leftrightarrow abc\ge3^6\).Điều này luôn đúng theo (1)
Suy ra:\(ab+bc+ca\ge9\sqrt{abc}=9\left(a+b+c\right)\).Hoàn tất chứng minh
Dấu "=" xảy ra khi \(a=b=c=9\)
 

31 tháng 1 2019

Thanks bạn nhiều nhé!