K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 5 2020

\(P=\left(\frac{1}{1+\frac{b}{a}}\right)^2+\left(\frac{1}{1+\frac{c}{b}}\right)^2+\frac{1}{4}.\frac{c}{a}\)

Đặt \(\left\{{}\begin{matrix}\frac{b}{a}=x>0\\\frac{c}{b}=y>0\end{matrix}\right.\) \(\Rightarrow\frac{c}{a}=xy\)

\(P=\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}+\frac{xy}{4}\ge\frac{1}{1+xy}+\frac{xy}{4}\)

\(P\ge\frac{1}{1+xy}+\frac{1+xy}{4}-\frac{1}{4}\ge2\sqrt{\frac{1+xy}{4\left(1+xy\right)}}-\frac{1}{4}=\frac{3}{4}\)

\(P_{min}=\frac{3}{4}\) khi \(xy=1\) hay \(a=c\)

27 tháng 10 2017

cái này bọn mik làm rồi này, cậu chia cả tử và mẫu cho a^2 ;b^2(lần lượt nhé và chỉ 2 phân thức đầu thôi)

sau đó 

rồi cậu rút gọn mẫu và đặt b/a=x;c/b=y=> c/a=xy

rồi ... cô si các kiểu

bài này chi đề xuất để biết thêm chi tiết liên hệ với đào khánh chi thông minh hok giỏi nhất đội tuyển toán trường THCS 14-10

2 tháng 7 2020

Dự đoán \(MinP=\frac{3}{4}\)khi a = b = c

Ta có: \(\frac{c}{4a}=\frac{c^2}{4ca}\ge\frac{c^2}{\left(c+a\right)^2}\)(Theo BĐT AM - GM)

Nên ta cần chứng minh \(\frac{a^2}{\left(a+b\right)^2}+\frac{b^2}{\left(b+c\right)^2}+\frac{c^2}{\left(c+a\right)^2}\ge\frac{3}{4}\)

Ta có bất đẳng thức quen thuộc sau: \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)(BĐT Bunyakovsky dạng phân thức)

Áp dụng, ta được: \(\frac{a^2}{\left(a+b\right)^2}+\frac{b^2}{\left(b+c\right)^2}+\frac{c^2}{\left(c+a\right)^2}\ge\frac{1}{3}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)^2\)

Đến đây, ta cần chỉ ra rằng: \(\frac{1}{3}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)^2\ge\frac{3}{4}\)

\(\Leftrightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\ge\frac{3}{2}\)

Ta viết bất đẳng thức cần chứng minh thành \(\frac{1}{\left(1+\frac{b}{a}\right)^2}+\frac{1}{\left(1+\frac{c}{b}\right)^2}+\frac{1}{\left(1+\frac{a}{c}\right)^2}\ge\frac{3}{4}\)

Đặt \(x=\frac{b}{a};y=\frac{c}{b};z=\frac{a}{c}\)khi đó xyz = 1 và ta cần chứng minh \(\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}+\frac{1}{\left(1+z\right)^2}\ge\frac{3}{4}\)

Lại đặt \(x=\frac{np}{m^2};y=\frac{mp}{n^2};z=\frac{mn}{p^2}\)(m, n, p > 0). Khi đó bất đẳng thức được viết lại thành:

\(\frac{1}{\left(1+\frac{np}{m^2}\right)^2}+\frac{1}{\left(1+\frac{mp}{n^2}\right)^2}+\frac{1}{\left(1+\frac{mn}{p^2}\right)^2}\ge\frac{3}{4}\)\(\Leftrightarrow\frac{m^4}{\left(m^2+np\right)^2}+\frac{n^4}{\left(n^2+mp\right)^2}+\frac{p^4}{\left(p^2+mn\right)^2}\ge\frac{3}{4}\)

Áp dụng bất đẳng thức Bunyakovsky dạng phân thức thì được: \(\frac{m^4}{\left(m^2+np\right)^2}+\frac{n^4}{\left(n^2+mp\right)^2}+\frac{p^4}{\left(p^2+mn\right)^2}\)\(\ge\frac{\left(m^2+n^2+p^2\right)^2}{\left(m^2+np\right)^2+\left(n^2+mp\right)^2+\left(p^2+mn\right)^2}\)

Và ta cần chứng minh \(\frac{\left(m^2+n^2+p^2\right)^2}{\left(m^2+np\right)^2+\left(n^2+mp\right)^2+\left(p^2+mn\right)^2}\ge\frac{3}{4}\)

\(\Leftrightarrow m^4+n^4+p^4+5\left(m^2n^2+n^2p^2+p^2m^2\right)\ge6mnp\left(m+n+p\right)\)

Ta có: \(m^4+n^4+p^4+5\left(m^2n^2+n^2p^2+p^2m^2\right)\ge\)\(\left(m^2n^2+n^2p^2+p^2m^2\right)+5\left(m^2n^2+n^2p^2+p^2m^2\right)\)\(=6\left(m^2n^2+n^2p^2+p^2m^2\right)\)\(\ge6mnp\left(m+n+p\right)\)

Vậy bất đẳng thức được chứng minh.

Đẳng thức xảy ra khi a = b = c 

31 tháng 5 2021

\(P=\frac{a^2}{\left(a+b\right)^2}+\frac{b^2}{\left(b+c\right)^2}+\frac{c}{4a}\)

\(P=\frac{1}{\left(1+\frac{b}{a}\right)^2}+\frac{1}{\left(1+\frac{c}{b}\right)}+\frac{c}{4a}\)

Ta đặt \(\frac{b}{a}=x;\frac{c}{b}=y\Rightarrow\frac{c}{a}=xy\)

\(P=\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}+\frac{xy}{4}\)

Lại có \(\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}\ge\frac{1}{xy+1}\)

Thật vậy, bđt trên tương đương với:

 \(\left(xy+1\right)\left[\left(1+x\right)^2+\left(1+y\right)^2\right]\ge\left(1+x\right)^2\left(1+y\right)^2\)

\(\Leftrightarrow\left(xy+1\right)\left(x^2+y^2+2x+2y+2\right)\ge\left(x^2+2x+1\right)\left(y^2+2y+1\right)\)

\(\Leftrightarrow x^2y+y^2x-x^2y^2-2xy+1\ge0\)

\(\Leftrightarrow xy\left(x-y\right)^2+\left(xy-1\right)^2\ge0\)luôn đúng

Suy ra: \(P\ge\frac{1}{xy+1}+\frac{xy}{4}=\frac{1}{xy+1}+\frac{xy+1}{4}-\frac{1}{4}\) 

           \(P\ge2\sqrt{\frac{1}{xy+1}\frac{xy+1}{4}}-\frac{1}{4}\left(AM-GM\right)\)   

                \(=1-\frac{1}{4}=\frac{3}{4}\)

Đẳng thức xảy ra khi a=b=c=1

3 tháng 10 2017

ap dung bdt \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\) 

\(\frac{1}{2a+b+c}=\frac{1}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

\(\Rightarrow P\le\frac{1}{16}\left[\left(\frac{1}{a+b}+\frac{1}{a+c}\right)^2+\left(\frac{1}{a+b}+\frac{1}{b+c}\right)^2+\left(\frac{1}{b+c}+\frac{1}{a+c}^2\right)\right]\)

\(\Rightarrow16P\le\frac{2}{\left(a+b\right)^2}+\frac{2}{\left(b+c\right)^2}+\frac{2}{\left(a+c^2\right)}+\frac{2}{\left(a+b\right)\left(b+c\right)}+\frac{2}{\left(a+b\right)\left(a+c\right)}\)\(+\frac{2}{\left(b+c\right)\left(c+a\right)}\)

ap dung \(x^2+y^2+z^2\ge xy+yz+xz\) voi a+b=x, b+c=y, c+a=z

\(16P\le\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}\)

tiếp tục áp dụng bdt ban đầu \(\frac{4}{a+b}\le\frac{1}{a}+\frac{1}{b}\)

\(\Rightarrow\frac{1}{\left(a+b\right)^2}\le4.16.\left(\frac{1}{a}+\frac{1}{b}\right)^2\)

\(\Rightarrow16P\le\frac{1}{4}.16\left[\left(\frac{1}{a}+\frac{1}{b}\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2+\left(\frac{1}{c}+\frac{1}{a}\right)^2\right]\)

=\(\frac{1}{4}\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\right)\)

tiep tuc ap dung bo de thu 2 ta co 

\(16P\le\frac{1}{4}.4\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=3\)

\(\Rightarrow p\le\frac{3}{16}\)dau =khi a=b=c=1

3 tháng 8 2020

Nguồn : mạng :V vào thống kê coi hìnholm.pn

22 tháng 6 2017

Kurosaki Akatsu giải thế thì đề bài cho  \(b^2+c^2\le a^2\)  để làm gì?

22 tháng 6 2017

Áp dụng bất đẳng thức AM-GM ta có :

\(P=\frac{1}{a^2}\left(b^2+c^2\right)+a^2\left(\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(P=\frac{b^2}{a^2}+\frac{c^2}{a^2}+\frac{a^2}{b^2}+\frac{a^2}{c^2}\ge4.\sqrt[4]{\frac{b^2}{a^2}.\frac{c^2}{a^2}.\frac{a^2}{b^2}.\frac{a^2}{c^2}}=4.1=4\)

=> \(Min_P=4\)

12 tháng 2 2018

\(\ge\)\(\frac{4}{a^2+b^2+2\left(a+b\right)}\) +\(\sqrt{\left(1+ab\right)^2}\) (bunhia và cosi)

  =\(\frac{4}{a^2+b^2+2ab}+1+ab=\frac{4}{\left(a+b\right)^2}+a+b+1\)

do \(a+b=ab\le\frac{\left(a+b\right)^2}{4}\Rightarrow a+b\ge4\)

dạt a+b = t thì t>=4

cần tìm min \(\frac{4}{t^2}+t+1=\frac{4}{t^2}+\frac{t}{16}+\frac{t}{16}+\frac{7t}{8}+1\)

                                      \(\ge3.\sqrt[3]{\frac{4}{t^2}.\frac{t}{16}.\frac{t}{16}}+\frac{7.4}{8}+1=\frac{21}{4}\)

dau = xay ra khi a=b=2

9 tháng 8 2017

Ta có: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(\Rightarrow\frac{a^3+b^3+c^3}{4abc}=\frac{3}{4}+\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)}{4abc}\)

\(=\frac{3}{4}+\frac{1}{4}\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\ge\frac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\frac{3}{2}\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\ge\frac{9}{ab+ac+bc}\right)\)

\(\Rightarrow\frac{a^3+b^3+c^3}{4abc}\ge\frac{9}{4}\left(\frac{a^2+b^2+c^2}{ab+bc+ac}\right)-\frac{3}{2}\left(1\right)\)

Lại có:\(\frac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2+2\left(ab+bc+ac\right)}{30\left(a^2+b^2+c^2\right)}\)

\(=\frac{1}{30}+\frac{1}{15}\left(\frac{ab+bc+ca}{a^2+b^2+c^2}\right)\left(2\right)\).Từ (1);(2) có:

\(P=\frac{1}{30}-\frac{3}{2}+\frac{1}{5}\left(\frac{ab+bc+ca}{a^2+b^2+c^2}\right)+\frac{9}{4}\left(\frac{a^2+b^2+c^2}{ab+bc+ca}\right)-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)

\(=\frac{1}{15}\left(\frac{a^2+b^2+c^2}{ab+bc+ac}+\frac{ab+bc+ca}{a^2+b^2+c^2}-22\right)\ge-\frac{4}{3}\)

đề thi hsg toán lớp 9 tỉnh thanh hóa năm 2016-2017 mà

20 tháng 11 2018

\(\frac{1}{a^4\left(1+b\right)\left(1+c\right)}=\frac{1}{\frac{a^4\left(1+b\right)\left(1+c\right)}{abc}}=\frac{\frac{1}{a^3}}{\left(\frac{1}{b}+1\right)\left(\frac{1}{c}+1\right)}\)

Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\), tương tự suy ra:

\(A=\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{y^3}{\left(1+x\right)\left(1+z\right)}+\frac{z^3}{\left(1+x\right)\left(1+y\right)}\)

Theo BĐT AM-GM ta có: \(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+y}{8}+\frac{1+z}{8}\ge\frac{3x}{4}\)

Tương tự suy ra \(A+\frac{3}{4}+\frac{x+y+z}{4}\ge\frac{3\left(x+y+z\right)}{4}\)

\(\Rightarrow A\ge\frac{x+y+z}{2}-\frac{3}{4}\ge\frac{3\sqrt[3]{xyz}}{2}-\frac{3}{4}=\frac{3}{4}\)

Dấu = xảy ra khi x=y=z=1 hay a=b=c=1

20 tháng 11 2018

VỚi các số thực: a,b,c >0 thỏa a+b+c=1. Chứng minh rằng: \(\frac{1+a}{1-a}+\frac{1+b}{1-b}+\frac{1+c}{1-c}\le2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\)

Help me

23 tháng 3 2021

Bài 1

*Chứng minh bằng AM-GM

Áp dụng bất đẳng thức AM-GM ta có :

\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{cases}\Rightarrow}\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{abc}}=9\sqrt[3]{abc\cdot\frac{1}{abc}}=9\)

Vậy ta có đpcm

Đẳng thức xảy ra <=> a=b=c

23 tháng 3 2021

Bài 1

*Chứng minh bằng Cauchy-Schwarz

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}\)

=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\cdot\frac{9}{a+b+c}=9\left(đpcm\right)\)

Đẳng thức xảy ra <=> a=b=c