K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2019

Áp dụng BĐT AM-GM cho các số không âm:

\(\left\{{}\begin{matrix}a^2+1\ge2a\\b^2+1\ge2b\\c^2+1\ge2c\end{matrix}\right.\)\(\Rightarrow a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)

\(''=''\Leftrightarrow a=b=c=1\)

22 tháng 3 2018

1a)\(\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{4}\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

b)\(\dfrac{a^2+b^2+c^2}{3}\ge\dfrac{\left(a+b+c\right)^2}{9}\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

22 tháng 3 2018

2a)\(a^2+\dfrac{b^2}{4}\ge ab\)

\(\Leftrightarrow a^2-ab+\dfrac{b^2}{4}\ge0\)

\(\Leftrightarrow a^2-2\cdot\dfrac{1}{2}b\cdot a+\left(\dfrac{1}{2}b\right)^2\ge0\)

\(\Leftrightarrow\left(a-\dfrac{1}{2}b\right)^2\ge0\)(luôn đúng)

b)Đã cm

c)\(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)(luôn đúng)

Dấu bằng xảy ra khi a=b=1

19 tháng 3 2021

\(a^3+2b^3+c^3\ge b^2\left(a+c\right)+b\left(a^2+c^2\right)\)

\(\Leftrightarrow a^3+2b^3+c^3-b^2\left(a+c\right)-b\left(a^2+c^2\right)\ge0\)

\(\Leftrightarrow\left(a^3+b^3-b^2a-ab^2\right)+\left(c^3+b^3-b^2c-bc^2\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2\ge0\)( đúng )
Vậy ta có ĐPCM

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

15 tháng 10 2017

Áp dụng BĐT\(x+y\ge2\sqrt{xy}\)ta có

\(a^2+b^2\ge2ab\)

\(b^2+c^2\ge2bc\)

\(c^2+a^2\ge2ca\)

\(\Rightarrow\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge8a^2b^2c^2\ge2a^2b^2c^2\)

DD
22 tháng 1 2021

Áp dụng bất đẳng thức Cauchy - Schwarz với 2 bộ số \(\left(a,b,c\right)\)và \(\left(1,1,1\right)\)ta có: 

\(\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\ge\left(a.1+b.1+c.1\right)^2=1\)

\(\Rightarrow a^2+b^2+c^2\ge\frac{1}{3}\).

Dấu \(=\)xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\).

22 tháng 1 2021

Còn cách khác :3 

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có ngay :

\(a^2+b^2+c^2=\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\ge\frac{\left(a+b+c\right)^2}{1+1+1}=\frac{1^2}{3}=\frac{1}{3}\)

Đẳng thức xảy ra <=> a = b = c = 1/3

Vậy ta có điều phải chứng minh 

20 tháng 3 2018

a) \(a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng với mọi a,b,c)

b)\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

20 tháng 3 2018

Câu a :

Ta có :

\(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

Dấu = xảy ra khi \(a=b\)

Câu b :

\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ( đúng )

Dấu = xảy ra khi \(a=b=c\)

11 tháng 11 2019

P/s : bài này khá khó nên mình thử thôi ! 

Không mất tính tổng quát , ta giả sử : \(a\ge b\ge c\)

Đặt \(M=ab+bc+ca-12\left(a^3+b^3+c^3\right)\left(a^2b^2+b^2c^2+c^2a^2\right)\)

      \(N=a\left(b+c\right)-12\left[a^3+\left(b+c\right)^3\right]\left[a^2\left(b+c\right)^2\right]\)

Ta có : \(ab+ac+bc\ge a\left(b+c\right)\)hay \(a^2b^2+b^2c^2+c^2a^2\le a^2\left(b+c\right)^2\)

\(\Rightarrow M\ge N\)

Tiếp , ta sẽ chứng minh \(N\ge0\)

\(\Leftrightarrow a\left(b+c\right)-12\left[a^3+\left(b+c\right)^3\right]\left[a^2\left(b+c\right)^2\right]\ge0\)

\(\Leftrightarrow a\left(b+c\right)\left\{1-12a\left(b+c\right)\left[a^3+\left(b+c\right)^3\right]\right\}\ge0\)

\(\Leftrightarrow1-12a\left(b+c\right)\left[a^3\left(b+c\right)^3\right]\ge0\)

\(\Leftrightarrow1-12a\left(b+c\right)\left[\left(a+b+c\right)^3-3a\left(b+c\right)\left(a+b+c\right)\right]\ge0\)

\(\Leftrightarrow1-12a\left(b+c\right)\left[1-3a\left(b+c\right)\right]\ge0\left(1\right)\)

Đặt x = a ; y = b + c ta có : \(x+y=1\Rightarrow xy\le\frac{1}{4}\)

Theo bất đẳng thức AM - GM , ta có :

\(12xy\left(1-3xy\right)\le\frac{1}{4}.12xy\left(4-12xy\right)\le\frac{1}{4}\left(\frac{12xy+4-12xy}{2}\right)^2=1\)

=> Bất đẳng thức ( 1 ) luôn đúng 

\(\Rightarrow N\ge0\)

Vậy \(M\ge0\)\(\Leftrightarrow ab+bc+ca\ge12\left(a^3+b^3+c^3\right)\left(a^2b^2+b^2c^2+c^2a^2\right)\)

Đẳng thức xảy ra với bộ \(\left(\frac{3+\sqrt{3}}{6};\frac{3-\sqrt{3}}{6};0\right)\)và các hoán vị của chúng .

12 tháng 11 2019

WLOG: \(c=min\left\{a,b,c\right\}\)

Let \(p=a+b+c;ab+bc+ca=q;abc=r\) so p = 1; \(r\ge0\)and \(3\ge q\ge ab\left(\text{vì }c\ge0\right)\)

Need: \(q\ge12\left(p^3-3pq+3r\right)\left(q^2-2pr\right)\)

Have: \(VP=12\left(1-3q+3r\right)\left(q^2-2r\right)=\frac{2}{3}.\left(1-3q+3r\right).18\left(q^2-2r\right)\)

\(\le\frac{1}{6}\left[1-3q+3r+18\left(q^2-2r\right)\right]=\frac{1}{6}\left[18q^2-3q+1-33r\right]\)

\(\le\frac{1}{6}\left(18q^2-3q+1\right)=3q^2-\frac{1}{2}q+\frac{1}{6}\)

Hence, we need to prove: \(q\ge3q^2-\frac{1}{2}q+\frac{1}{6}\)

\(\Leftrightarrow3q^2-\frac{3}{2}q+\frac{1}{6}\le0\Leftrightarrow\frac{1}{6}\le q\le\frac{1}{3}\)

Which it is obvious because:

\(q=ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

\(q-\frac{1}{6}=ab+bc+ca-\frac{1}{6}=ab+c-\frac{1}{6}+c\left(a+b-1\right)\)\(=ab-\frac{1}{6}+1-\left(a+b\right)-c\left[1-\left(a+b\right)\right]\)

\(=ab-\frac{1}{6}+\left[1-\left(a+b\right)\right]\left(1-c\right)\ge0\)

3 tháng 5 2017

Giải:

Áp dụng BĐT Bunhiacopxki ta có:

\(\left(a^2+b^2+c^2\right)\left(1+1+1\right)\) \(\ge\left(a.1+b.1+c.1\right)^2=1\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge1\)

\(\Leftrightarrow a^2+b^2+c^2\ge\dfrac{1}{3}\) (Đpcm)

Dấu "=" xảy ra \(\Leftrightarrow\dfrac{a}{1}=\dfrac{b}{1}=\dfrac{c}{1}\Leftrightarrow a=b=c=\dfrac{1}{3}\)

2 tháng 5 2017

Áp dụng bất đẳng thức Cauchy - Schwarz dưới dạng Engel ta có :

\(a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^3}{1+1+1}=\dfrac{1}{3}\) (đpcm)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{3}\)

8 tháng 5 2019

Em có cách này nhưng không biết đúng không.Anh check lại ạ,em mới lớp 7 thôi!

Bổ sung đk a,b,c >= 0 (hay a,b,c không âm)

Áp dụng BĐT Cô si (AM-GM),ta có:

\(a^2+\frac{1}{4}\ge2\sqrt{\frac{a^2.1}{4}}=a\) 

Tương tự: \(b^2+\frac{1}{4}\ge b;c^2+\frac{1}{4}\ge c\)

Cộng theo vế 3 BĐT trên suy ra \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c=\frac{3}{2}\)

\(\Rightarrow a^2+b^2+c^2\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\)

8 tháng 5 2019

Hoặc là dùng BĐT Bunhiacopxki chắc cũng được ạ!

Ta có: \(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=\frac{9}{4}\)

Suy ra \(a^2+b^2+c^2\ge\frac{\left(\frac{9}{4}\right)}{3}=\frac{9}{12}=\frac{3}{4}^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\)

4 tháng 5 2018

Áp dụng BĐT : ( x - y)2 ≥ 0∀x,y

⇒ x2 + y2 ≥ 2xy

Ta có : a2 + b2 ≥ 2ab ( *)

b2 + c2 ≥ 2bc (**)

c2 + a2 ≥ 2ac (***)

Cộng từng vế của ( *;**;***) , ta có :

2( a2 + b2 + c2) ≥ 2( ab + bc + ac)

⇔ 3( a2 + b2 +c2) ≥ ( a + b + c)2

⇔ a2 + b2 + c2\(\dfrac{3}{4}\)

5 tháng 5 2018

Đặt \(a=x+\dfrac{1}{2};b=y+\dfrac{1}{2};c=z+\dfrac{1}{2}\)

Ta có: \(a^2+b^2+c^2=\left(x+\dfrac{1}{2}\right)^2+\left(y+\dfrac{1}{2}\right)^2+\left(z+\dfrac{1}{2}\right)^2\)

\(=x^2+x+\dfrac{1}{4}+y^2+y+\dfrac{1}{4}+z^2+z+\dfrac{1}{4}\)

\(=x^2+y^2+z^2+\left(x+y+z\right)+\dfrac{3}{4}\)

\(=x^2+y^2+z^2+\dfrac{3}{2}+\dfrac{3}{4}\)

\(\Rightarrow x^2+y^2+x^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

=> đpcm