Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.1
Xét hiệu :
\(\left(\dfrac{a+b}{2}\right)^2-ab=\dfrac{a^2+2ab+b^2}{4}-\dfrac{4ab}{4}\)
\(=\dfrac{a^2-2ab+b^2}{4}=\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\in R\)
Vậy \(\left(\dfrac{a+b}{2}\right)^2\ge ab,\forall a,b\in R\)
Dấu bằng xảy ra : \(\Leftrightarrow a=b\)
3.2
Áp dụng kết quả của câu 3.1 vào câu 3.2 ta được:
\(\left(a+b+c\right)^2=[a+\left(b+c\right)]^2\ge4a\left(b+c\right)\)
Mà : \(a+b+c=1\left(gt\right)\)
nên : \(1\ge4a\left(b+c\right)\)
\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\) ( vì a,b,c không âm nên b+c không âm )
Mà : \(\left(b+c\right)^2\ge4bc\Leftrightarrow\left(b-c\right)^2\ge0,\forall b,c\in N\)
\(\Rightarrow b+c\ge16abc\)
Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c\end{matrix}\right.\Leftrightarrow b=c=\dfrac{1}{4};a=\dfrac{1}{2}\)
(a^2+b^2)/2>=ab
<=>(a^2+b^2)>=2ab
<=> a^2+2ab+b^2>=2ab
<=>a^2+b^2>=0(luôn đúng)
=> điều phải chứng minh.
Xét hiệu: \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)
=> \(a^2+b^2\ge2ab\)
Dấu "=" xra <=> a = b
Áp dụng ta có:
a) \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)
dấu "=" xra <=> a = b = c = 1
b) \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a.4b.4c.4d=256abcd\)
Dấu "=" xra <=> a = b= c = d = 2
a) a2 + b2 + c2 ≥ ab + bc + ca
Nhân 2 vào từng vế của bất đẳng thức
<=> 2( a2 + b2 + c2 ) ≥ 2( ab + bc + ca )
<=> 2a2 + 2b2 + 2c2 ≥ 2ab + 2bc + 2ca
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca ≥ 0
<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ca + a2 ) ≥ 0
<=> ( a - b )2 + ( b - c )2 + ( c - a )2 ≥ 0 ( đúng )
=> đpcm
Đẳng thức xảy ra <=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\)
b) a2 + b2 + c2 + 3 ≥ 2( a + b + c )
<=> a2 + b2 + c2 + 3 ≥ 2a + 2b + 2c
<=> a2 + b2 + c2 + 3 - 2a - 2b - 2c ≥ 0
<=> ( a2 - 2a + 1 ) + ( b2 - 2b + 1 ) + ( c2 - 2c + 1 ) ≥ 0
<=> ( a - 1 )2 + ( b - 1 )2 + ( c - 1 )2 ≥ 0 ( đúng )
=> đpcm
Đẳng thức xảy ra <=> \(\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}}\Leftrightarrow a=b=c=1\)
Xét hiệu VT - VP
\(\dfrac{a+b}{bc+a^2}+\dfrac{b+c}{ab+b^2}+\dfrac{c+a}{ab+c^2}-\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}=\dfrac{a^2+ab-bc-a^2}{a\left(bc+a^2\right)}+\dfrac{b^2+bc-ac-b^2}{b\left(ac+b^2\right)}+\dfrac{c^2+ac-ab-c^2}{c\left(ab+c^2\right)}=\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}+\dfrac{c\left(b-a\right)}{b\left(ac+b^2\right)}+\dfrac{a\left(c-b\right)}{c\left(ab+c^2\right)}\)
Do a,b,c bình đẳng nên giả sử a\(\ge\)b\(\ge\)c, khi đó \(b\left(a-c\right)\)\(\ge\)0, c(b-a)\(\le\)0, a(c-b)\(\le\)0
\(a^3\ge b^3\ge c^3=>abc+a^3\ge abc+b^3\ge abc+c^3\)=>\(\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}\le\dfrac{b\left(a-c\right)}{b\left(ac+b^2\right)}\)
=> VT -VP \(\le\) \(\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}+\dfrac{c\left(b-a\right)}{b\left(ac+b^2\right)}+\dfrac{a\left(c-b\right)}{c\left(ab+c^2\right)}=\dfrac{ab-ac}{b\left(ac+b^2\right)}+\dfrac{ac-ab}{c\left(ab+c^2\right)}=\dfrac{a\left(b-c\right)}{b\left(ac+b^2\right)}-\dfrac{a\left(b-c\right)}{c\left(ab+c^2\right)}\)
mà \(\dfrac{1}{b\left(ac+b^2\right)}\le\dfrac{1}{c\left(ab+c^2\right)}\) nên VT-VP <0 đpcm
a ) Áp dụng BĐT phụ \(a^2+b^2\ge2ab\) cho các cặp số thực , ta có :
\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)
b ) Làm tương tự như a )
Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)
a) Lại có : \(\left(a-1\right)^2\ge0\Leftrightarrow...\Leftrightarrow a^2+1\ge2a\)
cmtt \(\Rightarrow\left\{{}\begin{matrix}b^2+1\ge2b\\c^2+1\ge2c\end{matrix}\right.\)
Nhân vế theo vế ta đc: \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\left(dpcm\right)\)
b) Tiếp tục có \(\left(a-2\right)^2\ge0\Leftrightarrow...\Leftrightarrow a^2+4\ge4a\)
CMTT: \(\Rightarrow\left\{{}\begin{matrix}b^2+4\ge4b\\c^2+4\ge4c\end{matrix}\right.\)
Nhân vế theo vế ta đc: \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\ge4a.4b.4c=256abc\left(dpcm\right)\)
ta có
\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\\ \Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)\ge0\\ \Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
Bất đẳng thức trên đúng với mọi số thực a,b,c nên bất đẳng thức ban đầu được chứng minh
(Dấu bằng xảy ra khi và chỉ khi a=b=c=1)
\(a^2+b^2+c^2+1>a+b+c\)
\(\Leftrightarrow a^2+b^2+c^2+1-a-b-c>0\)
\(\Leftrightarrow\left(a^2-a+\frac{1}{4}\right)+\left(b^2-b+\frac{1}{4}\right)+\left(c^2-c+\frac{1}{4}\right)+\frac{1}{4}>0\)
\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\left(c-\frac{1}{2}\right)^2+\frac{1}{4}>0\)( luôn đúng )
Vậy ...
Ta có: \(a^2+b^2+c^2+1>a+b+c\)
\(\Leftrightarrow a^2+b^2+c^2+1-a-b-c>0\)
\(\Leftrightarrow\left(a^2-a+\frac{1}{4}\right)+\left(b^2-b+\frac{1}{4}\right)+\left(c^2-c+\frac{1}{4}\right)+\frac{1}{4}>0\)
\(\Leftrightarrow\left(a^2-2.a.\frac{1}{2}+\frac{1}{4}\right)+\left(b^2-2.b.\frac{1}{2}+\frac{1}{4}\right)+\left(c^2-2.c.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}>0\)
\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\left(c-\frac{1}{2}\right)^2+\frac{1}{4}>0\)
Ta thấy: (a-1/2)2 lớn hơn hoặc bằng 0 (với mọi a)
(b-1/2)2 lớn hơn hoặc bằng 0 (với mọi b)
(c-1/2)2 lớn hơn hoặc bằng 0 (với mọi c)
1/4 > 0
Nên BĐT luôn đúng
=> ĐPCM