Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn xem lại cái đề được không
với a=1/2; b=7/10; c=13/10 thì bất đẳng thức trên không đúng
Sửa đề: a+b+c>=3
Hay 6<= 2(a+b+c)
Theo BĐT Cauchy-Schwarz dạng Engel
\(\frac{a^2}{a+2}+\frac{b^2}{b+2}+\frac{c^2}{c+2}\ge\frac{\left(a+b+c\right)^2}{a+b+c+6}\ge\frac{\left(a+b+c\right)^2}{3\left(a+b+c\right)}=\frac{a+b+c}{3}\ge\frac{3}{3}=1\)
p/s: ko chắc lắm bạn ktra giúp mình nha
ta có:\(\left(a+2b\right)^2=\left(1.a+\sqrt{2}.\sqrt{2}b\right)^2\le\left(1+2\right)\left(a^2+2b^2\right)\)( bđt bunhiacopxki)
\(\left(a+2b\right)^2\le3.3c^2=9c^2\)→\(a+2b\le3c\)
lại có:\(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\)
dấu = xảyra khi.... a+2b2=3c2(:v)
http://diendantoanhoc.net/topic/104095-cmr-a2b2c2abc-geq-4/
vô đó,,ta sẽ có 3+abc>=4 => abc>=1 =>-abc<1 => dùng vs cái trên => dpcm
áp dụng bđt phụ
a2+b2+c2>= 1/3(a+b+c)2
=> a+b+c <=3
chịu thôi
Rút: \(c=-\left(a+b\right)\) ta cần chứng minh:
\(a^2+b^2+\left(a+b\right)^2< 2\) với \(-1< a\le b\le-\left(a+b\right)< 1\)
Từ \(-1< a\le b\le-\left(a+b\right)< 1\Rightarrow-1< a+b< 1\)
Xét hiệu: \(\left(a+b\right)^2-1=\left(a+b-1\right)\left(a+b+1\right)< 0\).Vậy \(\left(a+b\right)^2< 1\)
Ta có: \(VT=a^2+b^2+\left(a+b\right)^2=2\left(a+b\right)^2-2ab< 2\left(a+b\right)^2< 2.1=2\)
Ta có đpcm.
Is that true?