K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2016
Hi a,b,c không âm và lớn hơn 2 thì sao mà a+b+c =3đc nhỉ??????
11 tháng 11 2019

P/s : bài này khá khó nên mình thử thôi ! 

Không mất tính tổng quát , ta giả sử : \(a\ge b\ge c\)

Đặt \(M=ab+bc+ca-12\left(a^3+b^3+c^3\right)\left(a^2b^2+b^2c^2+c^2a^2\right)\)

      \(N=a\left(b+c\right)-12\left[a^3+\left(b+c\right)^3\right]\left[a^2\left(b+c\right)^2\right]\)

Ta có : \(ab+ac+bc\ge a\left(b+c\right)\)hay \(a^2b^2+b^2c^2+c^2a^2\le a^2\left(b+c\right)^2\)

\(\Rightarrow M\ge N\)

Tiếp , ta sẽ chứng minh \(N\ge0\)

\(\Leftrightarrow a\left(b+c\right)-12\left[a^3+\left(b+c\right)^3\right]\left[a^2\left(b+c\right)^2\right]\ge0\)

\(\Leftrightarrow a\left(b+c\right)\left\{1-12a\left(b+c\right)\left[a^3+\left(b+c\right)^3\right]\right\}\ge0\)

\(\Leftrightarrow1-12a\left(b+c\right)\left[a^3\left(b+c\right)^3\right]\ge0\)

\(\Leftrightarrow1-12a\left(b+c\right)\left[\left(a+b+c\right)^3-3a\left(b+c\right)\left(a+b+c\right)\right]\ge0\)

\(\Leftrightarrow1-12a\left(b+c\right)\left[1-3a\left(b+c\right)\right]\ge0\left(1\right)\)

Đặt x = a ; y = b + c ta có : \(x+y=1\Rightarrow xy\le\frac{1}{4}\)

Theo bất đẳng thức AM - GM , ta có :

\(12xy\left(1-3xy\right)\le\frac{1}{4}.12xy\left(4-12xy\right)\le\frac{1}{4}\left(\frac{12xy+4-12xy}{2}\right)^2=1\)

=> Bất đẳng thức ( 1 ) luôn đúng 

\(\Rightarrow N\ge0\)

Vậy \(M\ge0\)\(\Leftrightarrow ab+bc+ca\ge12\left(a^3+b^3+c^3\right)\left(a^2b^2+b^2c^2+c^2a^2\right)\)

Đẳng thức xảy ra với bộ \(\left(\frac{3+\sqrt{3}}{6};\frac{3-\sqrt{3}}{6};0\right)\)và các hoán vị của chúng .

12 tháng 11 2019

WLOG: \(c=min\left\{a,b,c\right\}\)

Let \(p=a+b+c;ab+bc+ca=q;abc=r\) so p = 1; \(r\ge0\)and \(3\ge q\ge ab\left(\text{vì }c\ge0\right)\)

Need: \(q\ge12\left(p^3-3pq+3r\right)\left(q^2-2pr\right)\)

Have: \(VP=12\left(1-3q+3r\right)\left(q^2-2r\right)=\frac{2}{3}.\left(1-3q+3r\right).18\left(q^2-2r\right)\)

\(\le\frac{1}{6}\left[1-3q+3r+18\left(q^2-2r\right)\right]=\frac{1}{6}\left[18q^2-3q+1-33r\right]\)

\(\le\frac{1}{6}\left(18q^2-3q+1\right)=3q^2-\frac{1}{2}q+\frac{1}{6}\)

Hence, we need to prove: \(q\ge3q^2-\frac{1}{2}q+\frac{1}{6}\)

\(\Leftrightarrow3q^2-\frac{3}{2}q+\frac{1}{6}\le0\Leftrightarrow\frac{1}{6}\le q\le\frac{1}{3}\)

Which it is obvious because:

\(q=ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

\(q-\frac{1}{6}=ab+bc+ca-\frac{1}{6}=ab+c-\frac{1}{6}+c\left(a+b-1\right)\)\(=ab-\frac{1}{6}+1-\left(a+b\right)-c\left[1-\left(a+b\right)\right]\)

\(=ab-\frac{1}{6}+\left[1-\left(a+b\right)\right]\left(1-c\right)\ge0\)

16 tháng 1 2020

Cách 3: (rất gọn gàng)

Giả sử \(c=min\left\{a,b,c\right\}\).Trước hết chứng minh: \(4P\le\left(a+b+c\right)^3-3abc\)

Có: \(VP-VT=c\left(\Sigma_{cyc}a^2-\Sigma_{cyc}ab\right)+\left(a-b\right)^2\left(a+b-2c\right)\ge0\)

Vì vậy: \(4P\le\left(a+b+c\right)^3-3abc\le\left(a+b+c\right)^3=1\Rightarrow P\le\frac{1}{4}\)

Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(\frac{1}{2};\frac{1}{2};0\right)\) và các hoán vị.

23 tháng 8 2019

P/s: Làm thử, ko chắc, em cũng chưa kiểm tra lại lời giải đâu.

Từ đề bài có \(P=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)=f\left(a;b;c\right)\)

Xét hiệu:

\(f\left(a;b;c\right)-f\left(t;t;c\right)=ab\left(a+b\right)-t^2.\left(2t\right)+bc\left(b+c\right)+ca\left(c+a\right)-2tc\left(t+c\right)\) với \(t=\frac{a+b}{2}\)  

Lại có \(b\left(b+c\right)+a\left(c+a\right)-2t\left(t+c\right)\)

\(=b^2+bc+a^2+ca-\left(a+b\right)\left(\frac{a+b}{2}+c\right)\)

\(=\frac{\left(a-b\right)^2}{2}\) nên :

\(f\left(a;b;c\right)-f\left(t;t;c\right)=\frac{c\left(a-b\right)^2}{2}-\left(t^2-ab\right)\left(a+b\right)\)

\(=\frac{2c\left(a-b\right)^2}{4}-\frac{\left(a+b\right)\left(a-b\right)^2}{4}\)

\(=\frac{\left(a-b\right)^2}{4}\left(c-a+c-b\right)\). Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).

Có ngay \(f\left(a;b;c\right)-f\left(t;t;c\right)\le0\) hay \(f\left(a;b;c\right)\le f\left(t;t;c\right)\).

Do đó ta sẽ tìm max của f(t;t;c) = \(2t^3+2tc\left(t+c\right)\). Mặt khác từ đề bài suy ra \(c=1-2t\) mà c> 0 và t > 0do đó \(0\le t\le\frac{1}{2}\)

Do đo \(f\left(t;t;c\right)=2t^3+2t\left(1-2t\right)\left(1-t\right)=6t^3-6t^2+2t\)

Bây giờ xét hiệu \(f\left(t;t;c\right)-\frac{1}{4}=\left(t-\frac{1}{2}\right)\left(6t^2-3t+\frac{1}{2}\right)\le0\forall\)\(0\le t\le\frac{1}{2}\)

Do đó \(f\left(t;t;c\right)\le\frac{1}{4}\).Đẳng thức xảy ra khi \(t=\frac{1}{2}\Rightarrow a=b=\frac{1}{2}\Rightarrow c=0\)

Vậy....

P/s: Em ko chắc vì hoàn toàn chưa kiểm tra lại.

14 tháng 3 2016

Áp dụng bất đẳng thức  Bunyakovsky cho  \(2\)  bộ  \(3\)  số thực  \(\left(1+1+1\right)\)  và  \(\left(a+b+c\right)\). Ta có:

\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=\frac{9}{4}\)

\(\Rightarrow\)  \(a^2+b^2+c^2\ge\frac{\frac{9}{4}}{3}=\frac{3}{4}\)  \(\left(đpcm\right)\)

Dấu   \("="\)   xảy ra  \(\Leftrightarrow\)  \(a=b=c=\frac{1}{2}\)

2 tháng 12 2016

a) Nếu n2+2014 là số chính phương với n nguyên dương thì n2 + 2014 = k2 → k2 – n2 = 2014

=> (k – n)(k + n) = 2014 (*)

Vậy (k + n) – (k – n) = 2n là số chẵn nên k và n phải cùng chẵn hoặc cùng lẻ.

Mặt khác (k – n)(k + n) = 2014 là chẵn

Nên (k – n), (k + n) đều chia hết cho 2 hay (k – n)(k + n) chia hết cho 4

Mà 2014 không chia hết cho 4

Suy ra đẳng thức (*) không thể xảy ra.

Vậy không có số nguyên dương n nào để số n2 + 2014 là số chính phương

b) Với 2 số a, b dương:

Xét: a2 + b2 – ab ≤ 1

<=> (a + b)(a2 + b2 – ab) ≤ (a + b) (vì a + b > 0)

<=> a3 + b3 ≤ a + b

<=> (a3 + b3)(a3 + b3) ≤ (a + b)(a5 + b5) (vì a3 + b3 = a5 + b5)

<=> a6 + 2a3b3 + b6 ≤ a6 + ab5 + a5b + b6

<=> 2a3b3 ≤ ab5 + a5b

<=> ab(a4 – 2a2b2 + b4) ≥ 0

<=> ab(a2 - b2) ≥ 0 đúng ∀ a, b > 0 .

Vậy: a2 + b2 ≤ 1 + ab với a, b dương và a3 + b3 = a5 + b5

2 tháng 12 2016

Cảm ơn bạn nha ! @Phùng Khánh Linh

1 tháng 4 2017

áp dụng BĐT bunhia... ta có 

\(\left(a+2b\right)^2=\left(1.a+\sqrt{2}\sqrt{2}b\right)^2\le\left(1+2\right)\left(a^2+2b^2\right)\le3.3c^2=9c^2\)

\(\Rightarrow a+2b\le3c\)

áp dụng cosi ta có 

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

áp dụng BDT trên ta có \(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+b+b}=\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\left(đpcm\right)\)

dấu = xảy ra khi a=b=c

19 tháng 3 2021

\(a^3+2b^3+c^3\ge b^2\left(a+c\right)+b\left(a^2+c^2\right)\)

\(\Leftrightarrow a^3+2b^3+c^3-b^2\left(a+c\right)-b\left(a^2+c^2\right)\ge0\)

\(\Leftrightarrow\left(a^3+b^3-b^2a-ab^2\right)+\left(c^3+b^3-b^2c-bc^2\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2\ge0\)( đúng )
Vậy ta có ĐPCM