\(b+c\ge16abc\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2017

Áp dụng BĐT AM-GM ta có:

\(b+c\ge2\sqrt{bc}\Rightarrow\left(b+c\right)^2\ge4bc\)

\(a+b+c\ge2\sqrt{a\left(b+c\right)}\Leftrightarrow1\ge4a\left(b+c\right)\)

Nhân theo vế 2 BĐT trên ta có:

\(\left(b+c\right)^2\ge16abc\left(b+c\right)\)\(\Leftrightarrow b+c\ge16abc\)

7 tháng 5 2018

còn cách khác không Ace Legonalolang

Áp dụng BĐT cô si với hai số không âm, Ta có: 

\(\left(a+b+c\right)^2=1\ge4a\left(b+c\right)\)

\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\)

Mà \(\left(b+c\right)^2\ge4bc\forall b,c\ge0\)

\(\Rightarrow b+c\ge16abc\)

Dấu "=" xảy ra khi: 

\(\hept{\begin{cases}a+b+c=1\\b=c\\a=b+c\end{cases}}\Rightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=c=\frac{1}{4}\end{cases}}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge9\)

\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge6\)

Áp dụng BĐT Cô si với 2 số dương ta có: 

\(\frac{a}{b}+\frac{b}{a}\ge2,\frac{b}{c}+\frac{c}{b}\ge2,\frac{c}{a}+\frac{a}{c}\ge2\)

\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge6\)(đúng) 

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)(do a+b+c=1)

15 tháng 1 2018

2. Có : 1/x + 1/y + 1/z = 0

=> 1 + x/y + x/z = 0 => x/y + x/z = -1

Tương tự : y/x + y/z = -1 ; z/x + z/y = -1

=> x/y + x/z + y/x + y/z + z/x + z/y = -3

Lại có : 1/x+1/y+1/z = 0

<=> xy+yz+zx/xyz = 0

<=> xy+yz+zx = 0

Xét : 0 = (xy+yz+zx).(1/x^2+1/y^2+1/z^2)

           = xy/z^2+xz/y^2+xy/z^2+x/y+y/x+y/z+z/y+z/x+x/z

           = xy/z^2+xz/y^2+xy/z^2-3

=> xy/z^2+xz/y^2+xy/z^2 = 3

=> ĐPCM

Tk mk nha

Áp dụng BĐT Cô si ta có: 

\(1=\left(a+b+c\right)^2\ge4a\left(b+c\right)\)

\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\)

Mà \(\left(b+c\right)^2\ge4bc\)

\(\Rightarrow b+c\ge4a.4bc=16abc\)

1 tháng 10 2018

bài này mình làm rồi nhưng quyên

mình làm toán 7 bồi dưỡng

1 tháng 10 2018

Ta có:

\(A=\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\le\frac{a}{2a}+\frac{b}{2b}+\frac{c}{2c}\le\frac{3}{2}\)

6 tháng 7 2015

tách ra mình làm cho. để cả đống này k làm đc đâu

11 tháng 5 2016

ý a, áp dụng BĐT cô si có 

   a + b >= căn ab     dấu = xay ra a=b

b + c >= căn bc         dau = xay ra khi b=c

c+a >= căn ac           dau = xay ra khi a=c

công tung ve vao. rut gon ta dc điều phải chung minh

21 tháng 1 2017

Chưa cho a,b,c > 0 sao chia 2 vế cho abc đuojwc

21 tháng 1 2017

Chia \(abc\) hai về được BĐT tương đương \(\frac{1}{ab}+\frac{1}{ac}\ge16\)

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) được: \(\frac{1}{ab}+\frac{1}{ac}\ge\frac{4}{ab+ac}=\frac{4}{a\left(b+c\right)}\)

Dưới mẫu bạn áp dụng BĐT \(a\left(b+c\right)\le\frac{\left(a+b+c\right)^2}{4}=\frac{1}{4}\) thì \(\frac{1}{ab}+\frac{1}{ac}\ge16\).

BĐT được chứng minh.

5 tháng 9 2017

cậu Áp dụng bđt cô si để chứng minh \(\left(x+y\right)^2\ge4xy\)

Áp dụng ta có \(\left[a+\left(b+c\right)\right]^2\ge4a\left(b+c\right)\)

=> \(1\ge4a\left(b+c\right)\)(1)

Áp dụng lần nữa ta có 

\(\left(b+c\right)^2\ge4bc\) (2 )

từ (1),(2), nhận 2 vế ta có 

\(\left(b+c\right)^2\ge16\left(b+c\right)abc\)

=> \(b+c\ge16abc\) (ĐPCM) 

dấu = tự tìm nhé

19 tháng 3 2017

b)

\(\dfrac{ab}{c+1}+\dfrac{bc}{a+1}+\dfrac{ca}{b+1}\le\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{ab}{a+b+2c}+\dfrac{bc}{2a+b+c}+\dfrac{ca}{a+2b+c}\le\dfrac{1}{4}\)

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{ab}{a+b+2c}=\dfrac{ab}{a+c+b+c}\le\dfrac{ab}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\\\dfrac{bc}{2a+b+c}=\dfrac{bc}{a+b+a+c}\le\dfrac{bc}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\\\dfrac{ca}{a+2b+c}=\dfrac{ca}{a+b+b+c}\le\dfrac{ca}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{ab}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)+\dfrac{bc}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+\dfrac{ca}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\)

\(\Rightarrow VT\le\dfrac{ab}{4\left(a+c\right)}+\dfrac{ab}{4\left(b+c\right)}+\dfrac{bc}{4\left(a+b\right)}+\dfrac{bc}{4\left(a+c\right)}+\dfrac{ca}{4\left(a+b\right)}+\dfrac{ca}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\left[\dfrac{ab}{4\left(a+c\right)}+\dfrac{bc}{4\left(a+c\right)}\right]+\left[\dfrac{bc}{4\left(a+b\right)}+\dfrac{ca}{4\left(a+b\right)}\right]+\left[\dfrac{ca}{4\left(b+c\right)}+\dfrac{ab}{4\left(b+c\right)}\right]\)

\(\Rightarrow VT\le\dfrac{ab+bc}{4\left(a+c\right)}+\dfrac{bc+ca}{4\left(a+b\right)}+\dfrac{ca+ab}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\dfrac{b\left(a+c\right)}{4\left(a+c\right)}+\dfrac{c\left(a+b\right)}{4\left(a+b\right)}+\dfrac{a\left(b+c\right)}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\dfrac{a+b+c}{4}\)

\(\Rightarrow VT\le\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{ab}{c+1}+\dfrac{bc}{a+1}+\dfrac{ca}{b+1}\le\dfrac{1}{4}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=\dfrac{1}{3}\)

19 tháng 3 2017

c lm hộ t bài số hqua t ms đăng nx đi

8 tháng 10 2019

Làm chữa lỗi phát:v Đến giờ mới nghĩ ra(thực ra là tình cờ xem lại ngày xưa:(

\(VT=\Sigma\frac{\sqrt{\left(a^2+b^2\right)2ab}}{a^2+b^2}\ge\Sigma\frac{2ab}{a^2+b^2}+3-3\)

\(=\Sigma\frac{\left(a+b\right)^2}{a^2+b^2}-3\ge\frac{\left[2\left(a+b+c\right)\right]^2}{2\left(a^2+b^2+c^2\right)}-3\)

\(=\frac{2\left(a+b+c\right)^2}{\left(a^2+b^2+c^2\right)}-3=\frac{2\left(a^2+b^2+c^2+2ab+2bc+2ca\right)}{a^2+b^2+c^2}-3\)

\(=\frac{4\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}-3=1\)(qed)

Đẳng thức xảy ra khi a = b = 1; c = 0 và các hoán vị (xét sơ sơ thôi chớ xét chi tiết em không biết làm đâu:v)

P.s: Chả biết có đúng hay không nữa:(( Lần này mà không đúng thì khổ.