\(a,b,c\ge0\)Thỏa mãn \(a+b+c=1\). Chứng minh
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2017

Chưa cho a,b,c > 0 sao chia 2 vế cho abc đuojwc

21 tháng 1 2017

Chia \(abc\) hai về được BĐT tương đương \(\frac{1}{ab}+\frac{1}{ac}\ge16\)

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) được: \(\frac{1}{ab}+\frac{1}{ac}\ge\frac{4}{ab+ac}=\frac{4}{a\left(b+c\right)}\)

Dưới mẫu bạn áp dụng BĐT \(a\left(b+c\right)\le\frac{\left(a+b+c\right)^2}{4}=\frac{1}{4}\) thì \(\frac{1}{ab}+\frac{1}{ac}\ge16\).

BĐT được chứng minh.

5 tháng 9 2017

cậu Áp dụng bđt cô si để chứng minh \(\left(x+y\right)^2\ge4xy\)

Áp dụng ta có \(\left[a+\left(b+c\right)\right]^2\ge4a\left(b+c\right)\)

=> \(1\ge4a\left(b+c\right)\)(1)

Áp dụng lần nữa ta có 

\(\left(b+c\right)^2\ge4bc\) (2 )

từ (1),(2), nhận 2 vế ta có 

\(\left(b+c\right)^2\ge16\left(b+c\right)abc\)

=> \(b+c\ge16abc\) (ĐPCM) 

dấu = tự tìm nhé

9 tháng 11 2018

Câu hỏi của Đỗ Minh Quang - Toán lớp 9 - Học toán với OnlineMath

Em xem cách làm ở link này nhé!

9 tháng 11 2018

Áp dụng bất đẳng thức coosi ta được:

\(a+b+c\ge2\sqrt{a\left(b+c\right)}\Rightarrow1\ge4a\left(b+c\right)\ge4a\left(b+c\right)^2\)

Mà \(\left(b+c\right)^2\ge4bc\Rightarrow b+c\ge16abc\)

Dấu "=" xảy ra khi \(a=b+c\) và \(b=c\) và \(a+b+c=1\Rightarrow a=\frac{1}{2};b=c=\frac{1}{4}\)

1 tháng 3 2017

mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !

1 tháng 3 2017

bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu

bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)

những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện

Áp dụng BĐT cô si với hai số không âm, Ta có: 

\(\left(a+b+c\right)^2=1\ge4a\left(b+c\right)\)

\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\)

Mà \(\left(b+c\right)^2\ge4bc\forall b,c\ge0\)

\(\Rightarrow b+c\ge16abc\)

Dấu "=" xảy ra khi: 

\(\hept{\begin{cases}a+b+c=1\\b=c\\a=b+c\end{cases}}\Rightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=c=\frac{1}{4}\end{cases}}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge9\)

\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge6\)

Áp dụng BĐT Cô si với 2 số dương ta có: 

\(\frac{a}{b}+\frac{b}{a}\ge2,\frac{b}{c}+\frac{c}{b}\ge2,\frac{c}{a}+\frac{a}{c}\ge2\)

\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge6\)(đúng) 

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)(do a+b+c=1)

21 tháng 8 2017

a)  Giả sử bất đẳng thức trên là đúng \(\Rightarrow a^2+b^2+c^2+\frac{3}{4}+a+b+c\ge0\)\(\Rightarrow\left(a^2+a+\frac{1}{4}\right)+\left(b^2+b+\frac{1}{4}\right)+\left(c^2+c+\frac{1}{4}\right)\ge0\)(luôn đúng với mọi a,b,c), ta có ĐPCM                            câu b tương tự nha bn!

21 tháng 8 2017

Bài 2:Áp dụng BĐT AM-GM ta có: 

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{x}{y}\cdot\frac{y}{z}\cdot\frac{z}{x}}=3\)

Khi a=b=c

Bài 3:

Áp dụng BĐT C-S dạng ENgel ta có: 

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=9\)

Khi \(a=b=c=\frac{1}{3}\)

Bài 4:

Áp dụng BĐT AM-GM ta có:

\(x+y\ge2\sqrt{xy};y+z\ge2\sqrt{yz};x+z\ge2\sqrt{xz}\)

Nhân theo vế 3 BĐT trên ta có ĐPCM

Khi x=y=z