Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:\(\left(a+2b\right)^2=\left(1.a+\sqrt{2}.\sqrt{2}b\right)^2\le\left(1+2\right)\left(a^2+2b^2\right)\)( bđt bunhiacopxki)
\(\left(a+2b\right)^2\le3.3c^2=9c^2\)→\(a+2b\le3c\)
lại có:\(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\)
dấu = xảyra khi.... a+2b2=3c2(:v)
Áp dụng BĐT AM-GM ta có:
\(a^4+bc\ge2\sqrt{a^4bc}=2a^2\sqrt{bc}\Rightarrow\frac{a^2}{a^4+bc}\le\frac{a^2}{2a^2\sqrt{bc}}\)\(=\frac{1}{2\sqrt{bc}}\)
Tương tự cho 2 BĐT còn lại ta có:
\(M\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ac}}\). Theo AM-GM có
\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\) thì
\(M\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ca}}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\frac{1}{2}\cdot\frac{ab+bc+ca}{abc}\le\frac{1}{2}\cdot\frac{a^2+b^2+c^2}{abc}=\frac{1}{2}\cdot3=\frac{3}{2}\)
Đẳng thức xảy ra khi \(a=b=c=1\)
từ GT suy ra abc >=1 và a/bc + b/ca + c/ab = 3.
áp dụng BĐT Cauchy : a4 + bc >=2a2v(bc) (v(bc) là căn bc).
nên a2/a4 + bc <=1/2v(bc).
do đó M <= 1/2.(1/v(bc) + 1/v(ca) + 1/v(ab).
ta chứng minh N = (1/v(bc) + 1/v(ca) + 1/v(ab) <=3 là xong.
thật vậy.
giả sử a <=b<=c nên 1/v(bc) <= 1/v(ca)<= 1/v(ab).
áp dụng BĐT Trê bư sep ta được (v(a) + v(b) + v(c))/3 . ((1/v(bc) + 1/v(ca) + 1/v(ab))/3 <= (v(a)/v(bc) + v(b)/v(ca) + v(c)/v(ab)/3.
ta có v(a) + v(b) + v(c) >=3 căn6(abc)>=3.
nên VT >=((1/v(bc) + 1/v(ca) + 1/v(ab))/3. (1)
lại có (x + y + z)2 <=3(x2 + y2 + z2) nên (VP)2 <= (a/bc + b/ca + c/ab)/3= 1.
hay VP <= 1 (2).
từ (1) và (2) suy ra ((1/v(bc) + 1/v(ca) + 1/v(ab))/3 <= 1 hay
(1/v(bc) + 1/v(ca) + 1/v(ab) <= 3
tức N <= 3 (đpcm).
(mình chưa biết đánh nên cố đọc nhé!)
Ta có:
\(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge9\left(a+2b\right)\)
Mặt khác:
\(\left(a+2b\right)^2\le\left(1+2\right)\left(a^2+2b^2\right)\le3\times3c^2\)
\(\Rightarrow\left(a+2b\right)\le3c\)
\(\frac{9}{\left(a+2b\right)}\ge\frac{9}{3c}=\frac{3}{c}\)
\(=VT\ge\frac{3}{c}\left(ĐPCM\right)\)
Dấu "=" xảy ra khi a=b=c=1
Ta có :(a+b-c)2 \(\ge\) 0
<=>a2+b2+c2 \(\ge\) 2(bc-ab+ac)
<=>\(\frac{5}{3}\ge\) 2(bc-ab+ac)
<=>bc+ac-ab \(\le\frac{5}{6}< 1\)
<=>\(\frac{bc+ac-ab}{abc}< \frac{1}{abc}\) (vì a,b,c>0 nên chia cả 2 vế cho abc)
<=>\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< 1\) (đpcm)
SAI ĐỀ vì nếu thử \(a=-1;b=-2;c=3\)
thì thỏa mãn đề bài nhưng \(a^2+b^2+c^2=\left(-1\right)^2+\left(-2\right)^2+3^2=14⋮̸3\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\)
\(\ge\frac{\left(1+1+1\right)^2}{a+2b}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a^2+2b^2\right)}}\)
\(>\frac{9}{\sqrt{3\cdot3c^2}}=\frac{9}{3c}=\frac{3}{c}=VP\)