K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

Áp dụng BĐT AM-GM ta có:

\(\dfrac{a}{2b+2c-a}=\dfrac{3a^2}{3a\left(2b+2c-a\right)}\ge\dfrac{3a^2}{\dfrac{\left(3a+2b+2c-a\right)^2}{4}}\)

\(\dfrac{12a^2}{\left(3a+2b+2c-a\right)^2}\)\(=\dfrac{12a^2}{\left(2a+2b+2c\right)^2}\)

Tương tự ta cho 2 BĐT còn lại ta cũng có:

\(\dfrac{b}{2a+2c-b}\ge\dfrac{12b^2}{\left(2a+2b+2c\right)^2};\dfrac{c}{2a+2b-c}\ge\dfrac{12c^2}{\left(2a+2b+2c\right)^2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{12\left(a^2+b^2+c^2\right)}{4\left(a+b+c\right)^2}\ge\dfrac{4\left(a+b+c\right)^2}{4\left(a+b+c\right)^2}=1\)

Đẳng thức xảy ra khi \(a=b=c\)

16 tháng 6 2017

\(\dfrac{a}{2b+2c-a}+\dfrac{b}{2c+2a-b}+\dfrac{c}{2a+2b-c}\)

\(=\dfrac{a^2}{2ab+2ac-a^2}+\dfrac{b^2}{2bc+2ba-b^2}+\dfrac{c^2}{2ca+2cb-c^2}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{4\left(ab+bc+ca\right)-a^2-b^2-c^2}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+a^2+b^2+c^2-a^2-b^2-c^2}=1\)

Dấu = xảy ra khi a = b = c

Đặt \(\hept{\begin{cases}x=2b+2c-a\\y=2c+2a-b\\z=2a+2b-c\end{cases}}\)

Vì a,b,c là độ dài ba cạnh của 1 tam giác nên \(x,y,z>0\)

Khi đó :

\(\Rightarrow\hept{\begin{cases}a=\frac{2y+2z-x}{9}\\b=\frac{2z+2x-y}{9}\\c=\frac{2x+2y-z}{9}\end{cases}}\)

Ta có bất đẳng thức mới theo ẩn x,y,z : 

\(\frac{2y+2z-x}{9x}+\frac{2z+2x-y}{9y}+\frac{2x+2y-z}{9z}\ge1\)

\(\Leftrightarrow\frac{2}{9}\left(\frac{y}{x}+\frac{z}{x}\right)+\frac{2}{9}\left(\frac{z}{y}+\frac{x}{y}\right)+\frac{2}{9}\left(\frac{x}{z}+\frac{y}{z}\right)-\frac{1}{3}\ge1\)

\(\Leftrightarrow\frac{2}{9}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{2}{9}\left(\frac{y}{z}+\frac{z}{y}\right)+\frac{2}{9}\left(\frac{z}{x}+\frac{x}{z}\right)-\frac{1}{3}\ge1\)

Ta chứng minh bất đẳng thức phụ sau : 

\(\frac{a}{b}+\frac{b}{a}\ge2\forall a,b>0\)

Thật vậy : \(\frac{a}{b}+\frac{b}{a}\ge2\)

\(\Leftrightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\)

\(\Leftrightarrow\frac{a^2+b^2}{ab}-2\ge0\)

\(\Leftrightarrow\frac{a^2+b^2-2ab}{ab}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)(luôn đúng \(\forall a,b>0\))

Áp dụng , ta được :

\(\frac{2}{9}.2+\frac{2}{9}.2+\frac{2}{9}.2-\frac{1}{3}\ge1\)

\(\Leftrightarrow\frac{12}{9}-\frac{1}{3}\ge1\)

\(\Leftrightarrow\frac{9}{9}\ge1\)(đúng)

Vậy bất đẳng thức được chứng minh 

NV
6 tháng 1 2022

\(\dfrac{a^3}{\left(a+2b\right)\left(b+2c\right)}+\dfrac{a+2b}{27}+\dfrac{b+2c}{27}\ge3\sqrt[3]{\dfrac{a^3\left(a+2b\right)\left(b+2c\right)}{27^2.\left(a+2b\right)\left(b+2c\right)}}=\dfrac{a}{3}\)

Tương tự:

\(\dfrac{b^3}{\left(b+2c\right)\left(c+2a\right)}+\dfrac{b+2c}{27}+\dfrac{c+2a}{27}\ge\dfrac{b}{3}\)

\(\dfrac{c^3}{\left(c+2a\right)\left(a+2b\right)}+\dfrac{c+2a}{27}+\dfrac{a+2b}{27}\ge\dfrac{c}{3}\)

Cộng vế:

\(VT+\dfrac{2\left(a+b+c\right)}{9}\ge\dfrac{a+b+c}{3}\)

\(\Rightarrow VT\ge\dfrac{a+b+c}{9}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

25 tháng 5 2018

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)

=> bc+ac+ab=0

ta có

\(bc+ac=-ab\)

<=> \(\left(bc+ac\right)^2=a^2b^2\)

<=> \(b^2c^2+a^2c^2+2abc^2=a^2b^2\)

<=> \(b^2c^2+a^2c^2-a^2b^2=-2abc^2\)

tương tự

\(a^2b^2+b^2c^2-c^2a^2=-2ab^2c\)

\(c^2a^2+a^2b^2-b^2c^2=-2a^2bc\)

thay vào E ta đc

\(E=\dfrac{-a^2b^2c^2}{2ab^2c}-\dfrac{a^2b^2c^2}{2abc^2}-\dfrac{a^2b^2c^2}{2a^2bc}\)

=\(-\dfrac{ac}{2}-\dfrac{ab}{2}-\dfrac{bc}{2}=\dfrac{-\left(ac+ab+bc\right)}{2}=0\) (vì ac+bc+ab=0 cmt)

14 tháng 1 2022
Cho sao nha nhưng tui ko bít làm
20 tháng 6 2018

bạn để ý trong ngoăcj có +2b^2c^2 đó bạn

Vì +2b^2c^2 - 4b^2c^2 = -2b^2c^2

20 tháng 6 2018

\(B=a^4+b^4+c^4-2a^2b^2-2a^2c^2-2b^2c^2\)

\(=\left(a^4+b^4+c^4-2a^2b^2-2a^2c^2+2b^2c^2\right)-4b^2c^2\)

\(=\left(a^2-b^2-c^2\right)-\left(2bc\right)^2\)

\(=\left(a^2-b^2-c^2-2bc\right)\left(a^2-b^2-c^2+2bc\right)\)

\(=\left[a^2-\left(b+c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]\)

\(=\left(a-b-c\right)\left(a+b+c\right)\left(a-b+c\right)\left(a+b-c\right)\)

Vì a,b,c là độ dài 3 cạnh tam giác nên:

b+c>a => a-(b+c) < 0 => a-b-c < 0

a+b+c > 0

a+c>b => a+c-b > 0 => a-b+c > 0

a+b>c => a+b-c > 0

Do đó (a-b-c)(a+b+c)(a-b+c)(a+b-c) < 0 hay B<0 (đpcm)

Áp dụng BĐT

\(\dfrac{9}{x+y+z}\le\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\\ \Rightarrow\dfrac{9abc}{a+3a+2c}\\ =\dfrac{9}{\left(a+c\right)\left(b+c\right)+2b}\le\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{4}{2}\) 

Tương tự với 2 BĐT còn lại rồi cộng vế theo vế

=> 9 vế trái

 \(\le\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\\ +\dfrac{ca}{b+c}+\dfrac{ca}{a+b}+\dfrac{a+b+c}{2}\\ =\dfrac{3\left(a+b+c\right)}{2}\\ \Rightarrow......._{\left(đpcm\right)}\)