Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề sai. Giả sử tam giác là tam giác đều thì ta có:
\(tan\left(30\right)+tan\left(30\right)=\frac{2\sqrt{3}}{3}>\frac{\sqrt{3}}{3}=tan\left(30\right)\)
Nếu nó đều thì bất đẳng thức bị sai là sao dùng bất đẳng thức đó để chứng minh nó đều được.
Sửa đề:
\(\hept{\begin{cases}tan\frac{A}{2}+tan\frac{B}{2}\le2tan\frac{C}{2}\left(1\right)\\cot\frac{A}{2}+cot\frac{B}{2}\le2cot\frac{C}{2}\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow\frac{1}{tan\frac{A}{2}}+\frac{1}{tan\frac{B}{2}}\le\frac{2}{tan\frac{C}{2}}\le\frac{4}{tan\frac{A}{2}+tan\frac{B}{2}}\)
\(\Leftrightarrow\left(tan\frac{A}{2}+tan\frac{B}{2}\right)^2\le4tan\frac{A}{2}.tan\frac{B}{2}\)
\(\Leftrightarrow\left(tan\frac{A}{2}-tan\frac{B}{2}\right)^2\le0\)
Dấu = xảy ra khi \(tan\frac{A}{2}=tan\frac{B}{2}\)
\(\Rightarrow A=B\)
Thế lại hệ ban đầu ta được
\(\hept{\begin{cases}2tan\frac{A}{2}\le2tan\frac{C}{2}\\2cot\frac{A}{2}\le2cot\frac{C}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}tan\frac{A}{2}\le tan\frac{C}{2}\\tan\frac{A}{2}\ge tan\frac{C}{2}\end{cases}}\)
Dấu = xảy ra khi \(A=C\)
Vậy ta có được \(A=B=C\) nên tam giác ABC là tam giác đều.
Cho tam giác ABC ,trực tâm H là trung điểm của đường cao AD .Chứng minh rằng tan góc B ,tan góc C =2
![](https://rs.olm.vn/images/avt/0.png?1311)
Ke BH vuong goc voi Ac tai I. Goc ACD+DAC=90 do. Goc DAC+AHI=90 do. Ma AHI=BHD(doi dinh).=>BHD=ACD.=>tanBHD=tanACD=BD/HD.
=>tanB.tanC=AD/BD.BD/HD=2
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=10(cm)
Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH\cdot BC=AB\cdot AC\)
hay AH=4,8(cm)