K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2017

Ta có:

\(S=pr=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)

\(\Leftrightarrow p^2r^2=p\left(p-a\right)\left(p-b\right)\left(p-c\right)\)

\(\Leftrightarrow r^2=\dfrac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p}\)

\(\Leftrightarrow\dfrac{1}{r^2}=\dfrac{p}{\left(p-a\right)\left(p-b\right)\left(p-c\right)}=\dfrac{1}{\left(p-a\right)\left(p-b\right)}+\dfrac{1}{\left(p-b\right)\left(p-c\right)}+\dfrac{1}{\left(p-c\right)\left(p-a\right)}\)

\(\Leftrightarrow\dfrac{1}{r^2}=4\left(\dfrac{1}{\left(b+c-a\right)\left(c+a-b\right)}+\dfrac{1}{\left(c+a-b\right)\left(a+b-c\right)}+\dfrac{1}{\left(a+b-c\right)\left(b+c-a\right)}\right)\)

\(\Leftrightarrow\dfrac{1}{4r^2}=\dfrac{1}{c^2-\left(a-b\right)^2}+\dfrac{1}{a^2-\left(b-c\right)^2}+\dfrac{1}{b^2-\left(c-a\right)^2}\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)

\(\Leftrightarrow\dfrac{1}{r^2\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)}\ge4\left(1\right)\)

Ta lại có:

\(S=\dfrac{ah_a}{2}=pr=\dfrac{r\left(a+b+c\right)}{2}\)

\(\Leftrightarrow h_a=\dfrac{r\left(a+b+c\right)}{a}\)

\(\Leftrightarrow h_a^2=\dfrac{r^2\left(a+b+c\right)^2}{a^2}\left(2\right)\)

Tương tự ta có:

\(\left\{{}\begin{matrix}h_b^2=\dfrac{r^2\left(a+b+c\right)^2}{b^2}\left(3\right)\\h_c^2=\dfrac{r^2\left(a+b+c\right)^2}{c^2}\left(4\right)\end{matrix}\right.\)

Từ (2), (3), (4) ta có:

\(h_a^2+h_b^2+h_c^2=r^2\left(a+b+c\right)^2\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\)

\(\Leftrightarrow\dfrac{\left(a+b+c\right)^2}{h_a^2+h_b^2+h_c^2}=\dfrac{1}{r^2\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)}\ge4\)

8 tháng 9 2017

A B C B' (d) a b c c ha

Kẽ đường thẳng (d) đi qua A và // với BC. Gọi B' đối xứng với B qua (d).

Ta có:

\(BB'^2=B'C^2-BC^2\le\left(AB'+AC\right)^2-BC^2\)

\(\Leftrightarrow4h_a^2\le\left(b+c\right)^2-a^2\left(1\right)\)

Tương tự ta cũng có:

\(\left\{{}\begin{matrix}4h_b^2\le\left(c+a\right)^2-b^2\left(2\right)\\4h_c^2\le\left(a+b\right)^2-c^2\left(3\right)\end{matrix}\right.\)

Cộng (1), (2), (3) vế theo vế ta được

\(4h_a^2+4h_b^2+4h_c^2\le\left(a+b\right)^2-c^2+\left(b+c\right)^2-a^2+\left(c+a\right)^2-b^2\)

\(\Leftrightarrow4\left(h_a^2+h_b^2+h_c^2\right)\le\left(a+b+c\right)^2\)

\(\Leftrightarrow\dfrac{\left(a+b+c\right)^2}{h_a^2+h_b^2+h_c^2}\ge4\)

8 tháng 4 2018

-Qua A vẽ đường thẳng Ax song song với CK , từ C vẽ đường thẳng vuông góc AE tại H , trên tia đối tia HA lấy điểm E sao cho HA=HE= \(\dfrac{AE}{2}\). Nối BE

- CM \(\Delta\)ACE cân tại C \(\Rightarrow\) CA=CE=b

- Áp dụng pytago vào \(\Delta\)ABE \(\Rightarrow\) (2hc)2+c2 =(BE)2 \(\le\) (a+b)2 ( dấu = xảy ra khi B,C,E thẳng hàng ) \(\Rightarrow\) (2hc)2 \(\le\) (a+b)2 -c2 (1)

tương tự (2hb)2 =..............(2), (2ha)2 = .........(3)

Cộng vế theo vế (1)(2)(3) ta đc ......đpcm

10 tháng 11 2018

bahj ơi hình vẽ hơi xấu đấyoe

2 tháng 3 2017

https://hoc24.vn/hoi-dap/question/189465.html

---

Lười gõ lại leu

10 tháng 1 2018

Em thảo khảo phần tính tỉ lệ độ dài các cạnh tại đây:

Câu hỏi của Đỗ Huy Hiển - Toán lớp 7 - Học toán với OnlineMath

Sau đó ta có: \(\frac{a}{10}=\frac{b}{15}=\frac{c}{6}=\frac{a+b+c}{31}=\frac{62}{31}=2\)

\(\Rightarrow a=20\left(cm\right);b=30\left(cm\right);c=12\left(cm\right)\)

9 tháng 10 2015

TA có 

2S = a.ha = b.hb = c.hc

<=> 3a = 4b = 5c 

<=> \(\frac{a}{20}=\frac{b}{15}=\frac{c}{12}=t\) ( t > 0 )

=> a= 20t ; b = 15t ; c = 12t 

b^2 + c^2 = (15t)^2 + ( 12t)^2 = 225t^2 + 144t^2 = 369t^2 < 400t^2 = (20t)^2 = a^2 

=> b^2 + c^2 < a^2 

9 tháng 10 2015

Ta có : a.ha = b.h= c.hc (cùng = 2 lần diện tích tam giác)

=> 3a = 4b = 5c => \(\frac{3a}{60}=\frac{4b}{60}=\frac{5c}{60}\)=> \(\frac{a}{20}=\frac{b}{15}=\frac{c}{12}\) 

Đặt  \(\frac{a}{20}=\frac{b}{15}=\frac{c}{12}\) = k ( k > 0 )  => a = 20k ; b = 15.k; c = 12.k

=> a2 = 400k2; b2 = 225k; c2 = 144k2

=> b2 + c2 = 369k< 400.k=> b2 + c< a2

Vậy....

19 tháng 11 2022

Bài 1:

Xét ΔABC có BC^2=AB^2+AC^2

nên ΔABC vuông tại A

\(AH=\sqrt{6^2-4.8^2}=3.6\left(cm\right)\)