\(\frac{b+c}{b.c}=\frac{2}{a}\)Chứn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2015

a #  b # c # a,thoan man a/(b-c)+b/(c-a)+c/(a-b)=0

<=> a(c-a)(a-b)+b(a-b)(b-c)+c(b-c)(c-a)=0

<=>-a(a-n)(a-c)-b(b-a)(b-c)+c(c-a)(c-b)(c-b)=0

<=>a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b)=0               (*)

Tu (*)ta thay a,b,c doi xung nen ko giam tinh tong quat gia su :a>b>c

Nếu a,b,c đều ko âm ,giả thiết trên thành a>b>c>hoặc=0

(*)<=>(a-b)(a^2 - ac - b^2 +bc)+c(c-a)(c-b)=0

<=>(a-b)[(a+b)(a-b)- c(a-b)]+c(c -a)(c-b)=0

<=>(a-b)^2.(a+b-c)+c(a-c)(b-c)=0        (**)

Thấy b- c > 0 (do b > c)và a > 0 =>a+b-c > 0 =>(a-b)^2 . (a+b-c)>0 va c(a-c)(b-c)>hoac = 0

=>(a-b)^2.(a+b-c)+c(a-c)(b-c)>0 mâu thuẫn với (**)

Vay c < 0 (noi chung la trong a,b,c phai co so am )

Nếu cả a,b,c đều không có số dương do giả thiết trên ta có :0 > hoac = a > hoac = b>hoac = c

(*)<=>a(a-b)(a-c)+(b-c)(b^2-ab-c^2 + ca)=0

<=>a(a-b)(a-c)+(b-c)[(b+c)(b-c)-a(b-c)]=0

<=>a(a-b)(a-c)+(b-c)^2.(b+c-a)=0             (***)

a-b > 0 ;a- c > 0 => a(a-b)(a-c)< hoac = 0 (vi a < hoac = 0)

Và b<0 ; c -a < 0 => b+ c -a < 0=>(b-c)^2.(b+c-a)<0

=> a(a-b)(a-c)+(b-c)^2.(b+c-a)<0  mâu thuẫn với  (***)

Chứng tỏ trong a,b,c phải có số dương 

Tóm lại trong 3 số a,b,c phải có  số dương và âm .

6 tháng 3 2021

Giả sử \(a< b< c\)thì \(a\ge2\)\(;\)\(b\ge3\)\(;\)\(c\ge5\)

Ta có:

\(\frac{1}{\left[a,b\right]}=\frac{1}{ab}\le\frac{1}{6}\)\(;\)\(\frac{1}{\left[b,c\right]}=\frac{1}{bc}\le\frac{1}{15}\)\(;\)\(\frac{1}{\left[c,a\right]}=\frac{1}{ca}\le\frac{1}{10}\)

Do đó: \(\frac{1}{\left[a,b\right]}+\frac{1}{\left[b,c\right]}+\frac{1}{\left[c,a\right]}\le\)\(\frac{1}{6}+\frac{1}{15}+\frac{1}{10}=\frac{1}{3}\)

\(\Rightarrow\)\(\frac{1}{\left[a,b\right]}+\frac{1}{\left[b,c\right]}+\frac{1}{\left[c,a\right]}\le\)\(\frac{1}{3}\)\(\rightarrowĐPCM\)

17 tháng 12 2019

Ta có : \(\frac{a}{b}=\frac{b}{c}\)
\(\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{b}{c}\right)^2=\frac{ab}{bc}\)(Áp dụng tính chất a = b => a2 = b2 = ab)
\(\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{ab}{bc}\)
\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)(Trừ khử b trên tử và dưới mẫu còn a/c)

\(\frac{1}{1}+\frac{1}{1}+\frac{1}{1}=1\)

30 tháng 4 2016

\(\frac{1}{1}+\frac{1}{1}+\frac{1}{1}=1\)

19 tháng 2 2020

Do \(abc=2018,bc+b+1\ne0\) nên thay vào biểu thức A ta có :

  \(A=\frac{2018}{abc+bc+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+2018}\)

\(=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\)

\(=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{a}{a\left(bc+b+1\right)}\)

\(=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}\)

\(=\frac{bc+b+1}{bc+b+1}=1\)

Vậy : \(A=1\) với a,b,c thỏa mãn đề.

19 tháng 2 2020

\(A=\frac{2018}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+2018}\)

\(=\frac{abc}{abc+ab+a}+\frac{ab}{abc+ab+a}+\frac{a}{ab+a+abc}\)

\(=1\)

Vậy ...

4 tháng 3 2018

\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\)

=> đpcm