K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2017

Ta có: a3 + b3 + c3 = 3abc 

  \(\Leftrightarrow\)a3 + b3 + c3 - 3abc = 0

  \(\Leftrightarrow\)(a + b)3 + c3 - 3ab2 - 3a2b - 3abc = 0

  \(\Leftrightarrow\)(a + b + c)[(a + b)2 - c(a + b) + c2 ] - 3ab(a + b + c) = 0

  \(\Leftrightarrow\)(a + b + c)(a2 + 2ab + b2 - ac - bc + c2 - 3ab) = 0

  \(\Leftrightarrow\)(a + b + c)(a2 + b2 + c2 - ab - bc - ca) = 0

Vì a + b + c khác 0 nên

    a2 + b2 + c2 - ab - bc - ca = 0

\(\Leftrightarrow\)2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0

\(\Leftrightarrow\)(a - b)2 + (b - c)2 + (c - a)2 = 0

\(\Leftrightarrow\)\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)\(\Leftrightarrow\)a = b = c 

 N = \(\frac{a^{2016}+b^{2016}+c^{2016}}{\left(a+b+c\right)^{2016}}\)= 1