Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1\)
\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
+)Nếu a+b+c=0\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)
\(\Rightarrow B=\frac{a+b}{a}.\frac{c+a}{c}.\frac{b+c}{b}=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=\frac{-\left(abc\right)}{abc}=-1\)
Nếu \(a+b+ c\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow a+b=2c\)
\(b+ c=2a\)
\(c+a=2b\)
\(\Rightarrow B=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=2.2.2=8\)
Ta có : \(a+b+c\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}\left(\cdot\right)}\)
\(\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)\)
\(=\frac{b+a}{b}.\frac{c+b}{c}.\frac{a+c}{a}\)
\(=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}\left(do\cdot\right)\)
\(=-1.-1.-1\)
\(=-1\)
+) x + b + c ≠ 0
Ta có :
\(\frac{a-b+c}{2b}=\frac{c-a+b}{2a}=\frac{a-c+b}{2c}\)
\(\Rightarrow\frac{a-b+c}{2b}+1=\frac{c-a+b}{2a}+1=\frac{a-c+b}{2c}+1\)
\(\Rightarrow\frac{a+b+c}{2b}=\frac{a+b+c}{2a}=\frac{a+b+c}{2c}\)=> 2a = 2b = 2c ( do a + b + c ≠ 0 )
\(\Rightarrow a=b=c\Rightarrow P=\left(1+\frac{c}{c}\right).\left(1+\frac{b}{b}\right).\left(1+\frac{a}{a}\right)=2.2.2=8\)
+) a + b + c = 0
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a-b+c}{2b}=\frac{c-a+b}{2a}=\frac{a-c+b}{2c}=\frac{a-b+c+c-a+b+a-c+b}{2b+2a+2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{0}{0}\left(\text{vô lý}\right)\)
Vậy P chỉ nhận 1 giá trị là P = 8
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}\)\(=\frac{c+a-b}{b}\)
=> \(\frac{a+b}{c}-1=\frac{b+c}{a}-1\)\(=\frac{c+a}{b}-1\)
=>\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
Xét 2 trường hợp
+) Nếu a+b+c \(\ne\)0
Áp dụng tính chất dãy tỉ số bằng nhau, ta có
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)\(=\frac{2\left(a+b+c\right)}{a+b+c}=2\)(vì a+b+c \(\ne\)0)
=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\c +a=2b\end{cases}}=>a=b=c\)\(\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)=> \(a=b=c\)
Thay vào B => B=\(\left(1+\frac{a}{a}\right)\left(1+\frac{a}{a}\right)\left(1+\frac{a}{a}\right)\)=2.2.2= 8
+) Nếu a+b+c=0 => \(\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}}\)Thay vào B
B=\(\left(1+\frac{-\left(a+c\right)}{a}\right)\)\(\left(1+\frac{-\left(b+c\right)}{c}\right)\)\(\left(1+\frac{-\left(a+b\right)}{b}\right)\)
=>B= \(\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=-1\)( Vì a,b,c \(\ne\)0 nên abc\(\ne\)0)
Vậy B= 8 nếu a+b+c khác 0 ; B=-1 nếu a+b+c =0
Xin lỗi bạn mk thiếu ở trường hợp 1
=>\(\hept{\begin{cases}a+b=2c\\c+b=2a\\a+c=2b\end{cases}}\)=>\(a=b=c\)
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{b+c+a}{a}=\frac{c+a+b}{b}\)
Xét \(a+b+c\ne0\Rightarrow a=b=c\). Khi đó \(P=2\cdot2\cdot2=8\)
Xét \(a+b+c=0\Rightarrow\)\(\left\{\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)
Khi đó \(P=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{-c}{a}\cdot\frac{-b}{c}\cdot\frac{-a}{b}=-1\)