\(\frac{a+b+c}{c}=\frac{a+c+b}{b}=\:\frac{c+b+a}{a}\)

tính P=

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

ket qua la dech biet ma tra loi

4 tháng 11 2016

d ở đâu vậy bạn

4 tháng 11 2016

chị mik ghi nhầm nick đó hihi

22 tháng 4 2019

bạn vào câu hỏi tương tự là có

22 tháng 4 2019

mày điên

6 tháng 12 2016

Đặt \(\hept{\begin{cases}a-b=x\\b-c=y\\c-a=z\end{cases}}\)

Thế vào bài toán trở thành 

Cho: \(\frac{x+z}{xz}+\frac{x+y}{xy}+\frac{y+z}{yz}=2013\left(1\right)\)

Tính \(M=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Từ (1) ta có

\(\left(1\right)\Leftrightarrow\frac{xy+yz+zx+yz+xy+zx}{xyz}=2013\)

\(\Leftrightarrow\frac{2\left(xy+yz+zx\right)}{xyz}=2013\)

\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=\frac{2013}{2}\)

Ta lại có

\(M=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{xy+yz+zx}{xyz}=\frac{2013}{2}\)

6 tháng 12 2016

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-a\right)\left(b-c\right)}+\frac{a-b}{\left(c-b\right)\left(c-a\right)}\)

\(=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(b-a\right)-\left(b-c\right)}{\left(b-a\right)\left(b-c\right)}+\frac{\left(c-b\right)-\left(c-a\right)}{\left(c-b\right)\left(c-a\right)}\)

\(=\frac{1}{a-b}-\frac{1}{a-c}+\frac{1}{b-c}-\frac{1}{b-a}+\frac{1}{c-a}-\frac{1}{c-b}\)

\(=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2013\)

\(\Rightarrow M=\frac{2013}{2}\)

18 tháng 7 2017

Áp dụng t/c dãy tỉ số = nhau

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) 

\(\Rightarrow\frac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\) 

Tương tự \(b+c=2a;;c+a=2b\) 

\(\Rightarrow D=\left(\frac{a+b}{a}\right)\left(\frac{b+c}{b}\right)\left(\frac{c+a}{c}\right)=\left(\frac{2c}{a}\right)\left(\frac{2a}{b}\right)\left(\frac{2b}{c}\right)=8\)

18 tháng 7 2017

Theo đề ta có :

\(\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{a+c-b}{b}+2\)

\(\Rightarrow\frac{a+b-c+2c}{c}=\frac{b+c-a+2a}{a}=\frac{a+c-b+2b}{b}\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

\(\Rightarrow\left(a+b+c\right).\frac{1}{c}=\left(a+b+c\right)\frac{1}{c}=\left(a+b+c\right)\frac{1}{b}\)

(vì  \(a\ne b\ne c\ne0\) \(\frac{\Rightarrow1}{a}\ne\frac{1}{b}\ne\frac{1}{c}\ne0\) \(\Rightarrow a+b+c=0\))

* a+b+c=0

=>a+b=-c ; b+c=-a ; a+c =-b

\(D=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\)

\(=\frac{a+b}{a}.\frac{b+c}{b}.\frac{a+c}{c}=\frac{-c.-a.-b}{a.b.c}=\frac{-1.\left(a.b.c\right)}{a.b.c}=-1\)

Vậy : D=-1

26 tháng 4 2017

Theo đề ra\(\Rightarrow\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

Mà: a + b + c khác 0  => a = b = c

=> P = (1 + 1)(1 + 1)(1 + 1) = 2 . 2 . 2 = 8

15 tháng 10 2018

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\Leftrightarrow\)\(\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)

\(\Leftrightarrow\)\(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

\(P=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\frac{a+b}{a}.\frac{b+c}{b}.\frac{c+a}{c}\)

+) Nếu \(a+b+c=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

\(\Rightarrow\)\(P=\frac{-c}{a}.\frac{-a}{b}.\frac{-b}{c}=\frac{-abc}{abc}=-1\)

+) Nếu \(a+b+c\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{3\left(a+b+c\right)}{a+b+c}=3\)

Suy ra : 

\(\frac{a+b+c}{c}=3\)\(\Leftrightarrow\)\(a+b=2c\)

\(\frac{a+b+c}{a}=3\)\(\Leftrightarrow\)\(b+c=2a\)

\(\frac{a+b+c}{b}=3\)\(\Leftrightarrow\)\(c+a=2b\)

\(\Rightarrow\)\(P=\frac{2c}{a}.\frac{2a}{b}.\frac{2b}{c}=\frac{8abc}{abc}=8\)

Vậy \(P=-1\) hoặc \(P=8\)

Chúc bạn học tốt ~ 

15 tháng 10 2018

ta có: \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{c+a+b}.\)\(=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\end{cases}}}\) => a+ c = a +b - c + b+c-a => a + c = 2b

tương tự như trên ta có: a + b = 2c; b + c = 2a

=> a=b=c

\(\Rightarrow P=\left(1+\frac{b}{a}\right).\left(1+\frac{c}{b}\right).\left(1+\frac{a}{c}\right)=\left(1+\frac{a}{a}\right).\left(1+\frac{c}{c}\right).\left(1+\frac{a}{a}\right)\)\(=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\) ( a,b,c khác 0 )