Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đpcm<=>(\(\frac{a}{b+c+d}\)-\(\frac{1}{3}\))+(\(\frac{b}{a+c+d}\)-\(\frac{1}{3}\))+(\(\frac{c}{a+b+d}\)-\(\frac{1}{3}\))+(\(\frac{d}{a+b+c}\)-\(\frac{1}{3}\))\(\ge\)0
Xét giá trị của các dấu ngoặc,dễ thấy chúng đều lớn hơn hoặc bằng 0
Vậy thì bất đẳng thức trên là đúng hay đpcm là đúng
Với a,b,c,d là các số nguyên dương ta luôn có :
\(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
Tương tự : \(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)
\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c+b}{a+b+c+d}\)
\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\)
Cộng vế với vế ta được :
\(\frac{a+b+c+d}{a+b+c+d}< S< \frac{2.\left(a+b+c+d\right)}{a+b+c+d}\rightarrow1< S< 2\)
Do đó , S không là số tự nhiên.
đặt \(k=\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\Rightarrow\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\)
\(\Rightarrow\frac{a+c}{b+d}=k\)
mà \(k=\frac{a}{b}\)
\(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}\)(đpcm)
b) đặt \(k=\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\Rightarrow\frac{a-c}{b-d}=\frac{bk-dk}{b-d}=\frac{k\left(b-d\right)}{b-d}=k\)
\(\Rightarrow\frac{a-c}{b-d}=k\)
mà \(k=\frac{a}{b}\)
\(\Rightarrow\frac{a-c}{b-d}=\frac{c}{d}\)(đpcm)
Ta có:
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{b}+\frac{1}{d}\right)=\frac{b+d}{2bd}\)
\(\Rightarrow2bd=c\left(b+d\right)\left(2\right)\)
Do b là TBC của a và c nên \(b=\frac{a+c}{2}\)
Thay vào (1) ta có: \(2.\frac{a+c}{2}.d=c.\left(\frac{a+c}{2}+d\right)\)
=> (a + c).d = \(\frac{c.\left(a+c+2d\right)}{2}\)
=> (a + c).2d = c.(a + c + 2d)
=> 2ad + 2cd = ac + c2 + 2cd
=> 2ad = ac + c2 = c.(a + c) = c.2b
=> ad = bc
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Ta có : \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)
Cộng cả hai vế với ab , ta được :
\(ad+ab< bc+ab\)
\(\Rightarrow a\left(d+b\right)< b\left(c+a\right)\)
\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\)(1)
Lại xét \(ad< bc\)
Cộng cả hai vế cho cd, ta được :
\(\Rightarrow ad+cd< bc+cd\)
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\dfrac{d}{c}< \dfrac{b+d}{a+c}\)
\(\Rightarrow\dfrac{c}{d}>\dfrac{a+c}{b+d}\)(2)
Từ (1) và (2) \(\Rightarrowđpcm\)
toan 3 : co 4 keo chia 3 ban hoi du may keo