Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(VT=a^2+b^2+c^2+2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
\(\Leftrightarrow VT=a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(ab^2+bc^2+ca^2\right)\) (Vì abc=1)
ÁP dụng bđt Cô-si cho 3 số dương, ta có:\(a^2+\frac{1}{b^2}+ab^2\ge3\sqrt[3]{\frac{a^3b^2}{b^2}}=3a\)
\(b^2+\frac{1}{c^2}+bc^2\ge3b\) \(c^2+\frac{1}{a^2}+ca^2\ge3c\)
\(\Rightarrow VT\ge3\left(a+b+c\right)+\left(ab^2+bc^2+ca^2\right)\ge3\left(a+b+c\right)+3\sqrt[3]{a^3b^3c^3}=3\left(a+b+c+1\right)\) Vì abc=1. Dấu bằng xảy ra khi a=b=c=1
bđt cần c/m <=>
\(\frac{1}{\left(a+c-b-c\right)^2}+\frac{\left(b+c\right)^2}{\left(a+c\right)^2\left(b+c\right)^2}+\frac{\left(a+c\right)^2}{\left(b+c\right)^2\left(a+c\right)^2}\ge4\\ \)
\(\frac{1}{\left(a+c\right)^2+\left(b+c\right)^2-2}+\left(b+c\right)^2+\left(a+c\right)^2\ge4\\ \)
\(\frac{1}{\left(a+c\right)^2+\left(b+c\right)^2-2}+\left(b+c\right)^2+\left(a+c\right)^2-2\ge2\)(đúng , theo cô-si)
ok
Quy đồng giả thiết lên:
\(\Leftrightarrow a\left(1+a\right)\left(1+c\right)+b\left(1+b\right)\left(1+a\right)+c\left(1+c\right)\left(1+b\right)=\left(1+a\right)\left(1+b\right)\left(1+c\right)\)
\(\Leftrightarrow a+b+c+ab+bc+ca+a^2\left(1+c\right)+b^2\left(1+a\right)+c^2\left(1+b\right)=1+a+b+c+ab+bc+ca+abc\)
\(\Leftrightarrow a^2\left(1+c\right)+b^2\left(1+a\right)+c^2\left(1+b\right)=1+abc\)
Ta chứng minh bổ đề:
\(\left(x+\frac{1}{x}\right)^2\ge\frac{260}{9}-\frac{160x}{3}\)
\(\Leftrightarrow\frac{9x^4+480x^3-242x^2+9}{9x^2}\ge0\)
\(\Leftrightarrow\frac{\left(3x-1\right)^2\left(x^2+54x+9\right)}{9x^2}\ge0\)(đúng)
Áp dụng vào bài toán ta được.
\(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2\)
\(\ge\frac{260}{9}-\frac{160a}{3}+\frac{260}{9}-\frac{160b}{3}+\frac{260}{9}-\frac{160c}{3}\)
\(=\frac{260}{3}-\frac{160}{3}\left(a+b+c\right)=\frac{260}{3}-\frac{160}{3}=\frac{100}{3}\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
áp dụng bunhia ta có:
\(\left(1+1+1\right)\left[\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2\right]\ge\left(a+\frac{1}{a}+b+\frac{1}{b}+c+\frac{1}{c}\right)^2\)
\(\ge\left(1+\frac{9}{a+b+c}\right)^2=100\)
\(\Rightarrow3\left[\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2\right]\ge100\)
\(\Rightarrow\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)^2\ge\frac{100}{3}\left(Q.E.D\right)\)