Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lý Ta-let vào \(\Delta\)ABC, ta có:
\(\frac{AE}{BE}=\frac{AF}{FC}\)
\(\rightarrow\frac{6}{3}=\frac{x}{4}\)
\(\rightarrow x=8\)
Gọi AD là a, ta có:
\(\frac{AF}{FC}=\frac{AD}{DC}\)
\(\rightarrow\frac{6}{3}=\frac{a}{6}\)
\(\rightarrow a=12\)
Vậy:
\(\frac{AE}{BE}=\frac{AD}{BD}\)
\(\rightarrow\frac{6}{3}=\frac{12}{y}\)
\(\rightarrow y=6\)
Áp dụng hệ quả TaLet vào \(\Delta\)ABC, ta có:
\(\frac{EF}{BC}=\frac{AE}{BE}\)
\(\rightarrow\frac{z}{12}=\frac{6}{3}\)
\(\rightarrow z=24\)
Hình tự vẽ nha bạn
Ta có EF//BC
=> AE/AB=AF/AC (HQ Ta let)
hay 3/BC =2/3 => BC = 4,5 cm
=> EB =BC - AE = 4,5 - 3 = 1,5 cm
Cách 2 : Ta có EF//BC
=> AE/EB=AF/FC
Áp dụng tc dãy ts bằng nhau ta có :
AE/EB=AF/FC = AE / (AE+EB)=AF/ (AF+FC)= AE /AB=AF/AC= 2/3
=> AE /AB=2/3 hay 3/BC=2/3 => BC=4,5 cm
=> EB =BC - AE = 4,5 - 3 = 1,5 cm
Vì \(a//BC\) nên theo định lý Ta - lét, ta có:
\(\frac{AB}{AE}=\frac{AC}{AF}\)
\(\Rightarrow AC=\frac{AB.AF}{AE}=\frac{6.3}{2}=9\left(cm\right)\)
Vì F nằm giữa A và C
\(\Rightarrow AF+FC=AC\)
\(\Rightarrow3+FC=9\)
\(\Rightarrow FC=9-3=6\left(cm\right)\)
Vậy ...
A B C E F D 6 cm 3 cm 4 cm 6 cm x y
Xét ΔABC có EF//BC (gt), theo đ/lí Ta-lét có: \(\frac{AE}{EB}=\frac{\text{AF}}{FC}\)
=> AF = x = \(\frac{AE.FC}{EB}=\frac{6.4}{3}=8\left(cm\right)\)
=> AC = AF + FC = 8 + 4 = 12 (cm); AB = AE + EB = 6 + 3 = 9 (cm)
Xét ΔABC có AD là p/g \(\widehat{BAC}\) => \(\frac{BD}{CD}=\frac{AB}{AC}\)
=> BD = y = \(\frac{AB.CD}{AC}=\frac{9.6}{12}=4,5\left(cm\right)\)
=> BC = BD + CD = 4,5 + 6 = 10,5 (cm)
Xét ΔABC có EF//BC (gt) => \(\frac{EF}{BC}=\frac{AE}{AB}=\frac{6}{9}=\frac{2}{3}\) (hệ quả đ/lí Ta-lét)
=> EF = z = \(\frac{2}{3}BC=\frac{2}{3}.10,5=7\left(cm\right)\)
A B D C F E
Vì DF//AB (gt) . Áp dụng định lý Talet ta có : \(\frac{AF}{AC}=\frac{BD}{BC}\)(1)
Vì DE//AC (gt) . Áp dụng định lý Talet ta có : \(\frac{AE}{AB}=\frac{CD}{BC}\)(2)
Từ (1);(2) \(\Rightarrow\frac{AE}{AB}+\frac{AF}{AC}=\frac{BD}{BC}+\frac{CD}{BC}=\frac{BD+CD}{BC}=\frac{BC}{BC}=1\)(Đpcm)
Điền vào chỗ (...) để đc kết quả đúng:
a. Tam giác ABC có EF//BC (E∈AB, F∈ AC) thì:
\(\frac{AE}{AB}=\frac{AF}{AC}=\frac{EF}{BC};\frac{AE}{EB}=\frac{AF}{FC};\frac{EB}{AB}=\frac{FC}{AC}.\)
b, Tam giác ABC có E ∈ AB, F ∈ AC thỏa mãn\(\frac{AE}{EB}=\frac{AF}{FC}\) thì: \(EF\) // \(BC.\)
Chúc bạn học tốt!