K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2020

Vì a,b,c > 0 nên \(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c}\)

Tương tự: \(\frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{c+a}< \frac{c+b}{a+b+c}\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\left(1\right)\)

Ta có: \(\sqrt{\frac{a}{b+c}}=\frac{a}{\sqrt{a\left(b+c\right)}}\)

Vì a,b,c>0 nên theo BĐT Cô-si ta có:

\(\frac{a+\left(b+c\right)}{2}\ge\sqrt{a\left(b+c\right)}>0\)

\(\Leftrightarrow\frac{2}{a+b+c}\le\frac{1}{\sqrt{a\left(b+c\right)}}\)

\(\Leftrightarrow\frac{2a}{a+b+c}\le\frac{a}{a\left(b+c\right)}\Leftrightarrow\frac{2a}{a+b+c}\le\sqrt{\frac{a}{b+c}}\)

Tương tự: \(\frac{2b}{a+b+c}\le\sqrt{\frac{b}{a+c}};\frac{2c}{a+b+c}\le\sqrt{\frac{c}{b+a}}\)

\(\Rightarrow\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge2\)

Dấu '=' xảy ra khi a=b+c;b=c+a;c=a+b

tức là a=b=c(vô lý)

\(\Rightarrow\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}>2\left(2\right)\)

Từ 1,2 => đpcm

21 tháng 6 2019

Ta có bđt quen thuộc sau \(\frac{x}{y+z}< \frac{x+m}{y+z+m}\) 

Áp dụng ta được \(\frac{a}{b+c}< \frac{a+a}{a+b+c}=\frac{2a}{a+b+c}\)
Chứng minh tương tự \(\frac{b}{c+a}< \frac{2b}{a+b+c}\)

                                     \(\frac{c}{a+b}< \frac{2c}{a+b+c}\)

Do đó \(VT< \frac{2a+2b+2c}{a+b+c}=2\)

Ta đi chứng minh VP > 2 

Áp dụng bđt Cô-si có \(a+\left(b+c\right)\ge2\sqrt{a\left(b+c\right)}\)

                             \(\Rightarrow\sqrt{a\left(b+c\right)}\le\frac{a+b+c}{2}\)

                             \(\Rightarrow\sqrt{\frac{b+c}{a}}\le\frac{a+b+c}{2a}\)

                             \(\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)

Chứng minh tương tự \(\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c}\)

                                    \(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)

Cộng 3 vế lại ta được \(VP\ge\frac{2a+2b+2c}{a+b+c}=2\)

Do đó \(VP\ge2>VT\)

\(\Rightarrow VT< VP\left(Q.E.D\right)\)

Dấu "=" không xảy ra

26 tháng 12 2018

Ta có: \(a< a+b\left(a,b>0\right)\Rightarrow\frac{a}{a+b}< 1\)

Có: \(\frac{a}{a+b}=\sqrt{\frac{a}{a+b}}.\sqrt{\frac{a}{a+b}}\)

Lại có: \(\frac{a}{b+a}< 1\Leftrightarrow\sqrt{\frac{a}{b+a}}< 1\Rightarrow\sqrt{\frac{a}{a+b}}.\sqrt{\frac{a}{a+b}}< \sqrt{\frac{a}{a+b}}\Rightarrow\frac{a}{a+b}< \sqrt{\frac{a}{a+b}}\)

Chứng minh tương tự ta có:

\(\frac{b}{b+c}< \sqrt{\frac{b}{b+c}}\)

\(\frac{c}{c+a}< \sqrt{\frac{c}{c+a}}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \sqrt{\frac{a}{a+b}}+\sqrt{\frac{b}{b+c}}+\sqrt{\frac{c}{c+a}}\)

                                                                                               đpcm

Sai thì thôi nhé~

Mới lp 8

4 tháng 12 2019

Áp dụng BĐT Cô - si cho 3 số không âm:

\(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{a^3}{b^3}}+1\ge3\sqrt[3]{\sqrt{\frac{a^6}{b^6}}}=\frac{3a}{b}\)

\(\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{b^3}{c^3}}+1\ge3\sqrt[3]{\sqrt{\frac{b^6}{c^6}}}=\frac{3b}{c}\)

\(\sqrt{\frac{c^3}{a^3}}+\sqrt{\frac{c^3}{a^3}}+1\ge3\sqrt[3]{\sqrt{\frac{c^6}{a^6}}}=\frac{3c}{a}\)

Cộng vế theo vế ,ta được:

\(2\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)+3\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)\(+\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)

\(\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)\(+3\)

\(\Rightarrow2\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)

\(\Rightarrow\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)\ge\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)

Vậy \(\Rightarrow\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)\ge\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)(đpcm)

6 tháng 12 2019

Trâu bò chút!

Đặt \(\sqrt{\frac{a}{b}}=x;\sqrt{\frac{b}{c}}=y;\sqrt{\frac{c}{a}}=z\Rightarrow xyz=1\)

BĐT quy về chứng minh: \(x^3+y^3+z^3\ge x^2+y^2+z^2\)

Để ý rằng: \(x^3=\frac{\left(x-1\right)^2\left(2x+1\right)}{2}+\frac{3}{2}x^2-\frac{1}{2}\)

Từ đó ta có:  \(VT-VP=\Sigma_{cyc}\frac{\left(x-1\right)^2\left(2x+1\right)}{2}+\frac{1}{2}\left(\Sigma x^2-3\right)\)

\(\ge\Sigma_{cyc}\frac{\left(x-1\right)^2\left(2x+1\right)}{2}\ge0\)

P/s: Nếu thích troll người thì thế ngược lại các biến đã đặt ta tìm được:

\(VT-VP\ge\Sigma_{cyc}\frac{\left(a-b\right)^2\left(2\sqrt{a}+\sqrt{b}\right)}{2b\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)^2}\ge0\)

25 tháng 11 2019
https://i.imgur.com/OrspMQU.jpg
NV
25 tháng 11 2019

\(\frac{xy}{z}+\frac{yz}{x}\ge2y\) ; \(\frac{xy}{z}+\frac{zx}{y}\ge2x\); \(\frac{yz}{x}+\frac{zx}{y}\ge2z\)

Cộng vế với vế:

\(2\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)\ge2\left(x+y+z\right)\)

Dấu "=" xảy ra khi \(x=y=z\)

5 tháng 6 2019

\(VT\ge\frac{4\left(\sum\sqrt{a}\right)^2}{2\sum\sqrt{a}}=2\sum\sqrt{a}=VP\)

5 tháng 6 2019

bạn giải kĩ hơn được k?

23 tháng 11 2019

Áp dụng BĐT Cauchy-Schwarz :

\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)(1)

Áp dụng BĐT quen thuộc \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\) :

\(\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\)(2)

Từ (1) và (2) ta có đpcm.

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{2}{3}\)

13 tháng 4 2019

Ta có:\(\sqrt{\frac{a}{b+c}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{a}{\frac{a+b+c}{2}}=\frac{2a}{a+b+c}\)

TT\(\Rightarrow\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c};\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)

Cộng vế theo vế ta được:\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge2\)

"="<=>a+b+c=2(a+b+c)<=>a+b+c=0(vô nghiệm vì a,b,c>0)

Dấu "=" không xảy ra=>đpcm

8 tháng 9 2019

Ta co:

\(\sqrt{2\left(b+1\right)}\le\frac{b+3}{2}\Rightarrow\frac{a}{\sqrt{2\left(b+1\right)}}\ge\frac{2a}{b+3}\)

Tuong tu:\(\frac{b}{\sqrt{2\left(c+1\right)}}\ge\frac{2b}{c+3};\frac{c}{\sqrt{2\left(a+1\right)}}\ge\frac{2c}{a+3}\)

\(\Rightarrow\frac{1}{\sqrt{2}}\left(\frac{a}{\sqrt{b+1}}+\frac{b}{\sqrt{c+1}}+\frac{c}{\sqrt{a+1}}\right)\ge2\left(\frac{a}{b+3}+\frac{b}{c+3}+\frac{c}{a+3}\right)\)

\(\frac{a}{b+3}+\frac{b}{c+3}+\frac{c}{a+3}\)

\(=\frac{a^2}{ab+3a}+\frac{b^2}{bc+3b}+\frac{c^2}{ca+3c}\ge\frac{\left(a+b+c\right)^2}{ab+bc+ca+9}\ge\frac{\left(a+b+c\right)^2}{\frac{\left(a+b+c\right)^2}{3}+9}=\frac{9}{\frac{9}{3}+9}=\frac{3}{4}\)

\(\Rightarrow2\left(\frac{a}{b+3}+\frac{b}{c+3}+\frac{c}{a+3}\right)\ge\frac{3}{2}\)

Hay \(\frac{a}{\sqrt{b+1}}+\frac{b}{\sqrt{c+1}}+\frac{c}{\sqrt{a+1}}\ge\frac{3\sqrt{2}}{2}\)

Dau '=' xay ra  khi \(a=b=c=3\)