Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a>0,b>0,c>0. Chứng minh \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}\sqrt{\dfrac{c}{a+b}}\ge2\)
Ta có :
\(\sqrt{\dfrac{c}{a+b}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{a}{b+c}}=\dfrac{c}{\sqrt{c\left(a+b\right)}}+\dfrac{b}{\sqrt{b\left(c+a\right)}}+\dfrac{a}{\sqrt{a\left(b+c\right)}}\)Áp dụng BĐT Cauchy :
\(\Rightarrow\dfrac{c}{\sqrt{c\left(a+b\right)}}+\dfrac{b}{\sqrt{b\left(c+a\right)}}+\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2c}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2a}{a+b+c}=2\)Đấu đẳng thức xảy ra khi \(\left\{{}\begin{matrix}a=b+c\\b=c+a\\c=a+b\end{matrix}\right.\)\(\Rightarrow a+b+c=2\left(a+b+c\right)\Rightarrow1=2\) Vậy dấu đẳng thức không xảy ra
Ta phải chứng minh :
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)
ta chứng minh bất đẳng thức phụ sau :
do \(\dfrac{a}{a+b}< 1\Rightarrow\dfrac{a}{a+b}< \dfrac{a+c}{a+b+c}\)
tương tự : \(\dfrac{b}{b+c}< \dfrac{b+a}{a+b+c}\); \(\dfrac{c}{c+a}< \dfrac{c+b}{a+b+c}\)
cộng ba vế BĐT lại ta có đpcm
Bất đẳng thức cần chứng minh tương đương với:
\(\dfrac{a}{a+3\sqrt{bc}}+\dfrac{b}{b+3\sqrt{ca}}+\dfrac{c}{c+3\sqrt{ab}}\)
Ta áp dụng bất đẳng thức Cô si dạng \(2\sqrt{xy}\le x+y\) cho các căn thức ở mẫu, khi đó ta được:
\(\dfrac{a}{a+3\sqrt{bc}}+\dfrac{b}{b+3\sqrt{ca}}+\dfrac{c}{c+3\sqrt{ab}}\ge\) với biểu thức
\(\dfrac{2a}{2a+3b+3c}+\dfrac{2b}{3a+2b+3c}+\dfrac{2c}{3a+3b+2c}\)
Khi đó ta cần chứng minh:
\(\dfrac{2a}{2a+3b+3c}+\dfrac{2b}{3a+2b+3c}+\dfrac{2c}{3a+3b+2c}\ge\dfrac{3}{4}\)
Đặt: \(\left\{{}\begin{matrix}x=2a+3b+3c\\y=3a+2b+3c\\z=3a+3b+2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2a=\dfrac{1}{4}\left(3y+3z-5x\right)\\2b=\dfrac{1}{4}\left(3z+3x-5y\right)\\2c=\dfrac{1}{4}\left(3x+3y-5z\right)\end{matrix}\right.\)
Khi đó đẳng thức trên được viết lại thành:
\(\dfrac{3y+3z-5x}{4x}+\dfrac{3z+3x-5y}{4y}+\dfrac{3x+3y-5z}{4z}\ge\dfrac{3}{4}\)
Hay: \(3\left(\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{x}{z}+\dfrac{z}{x}\right)-15\ge3\)
Bất đẳng thức cuối cùng luôn đúng theo bất đẳng thức Cô si.
Vậy bất đẳng thức được chứng minh. Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)
Đặt \(x=\sqrt{a};y=\sqrt{b};z=\sqrt{c}\)
Khi đó bđt đã tro chở thành:
\(\dfrac{yz}{x^2+3yz}+\dfrac{zx}{y^2+3zx}+\dfrac{xy}{z^2+3xy}\le\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{1}{3}-\dfrac{yz}{x^2+3yz}+\dfrac{1}{3}-\dfrac{zx}{y^2+3zx}+\dfrac{1}{3}-\dfrac{xy}{z^2+3xy}\ge1-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{x^2}{x^2+3yz}+\dfrac{y^2}{y^2+3zx}+\dfrac{z^2}{z^2+3xy}\ge\dfrac{3}{4}\) (đpcm)
Ta có: \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\sqrt{\dfrac{2c}{a+b}}\)
\(=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{2c}{\sqrt{2c\left(a+b\right)}}\)
\(\ge\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{4c}{a+b+2c}=\dfrac{\left(a-b\right)^2\left(a+b+c\right)}{\left(b+c\right)\left(c+a\right)\left(a+b+2c\right)}\ge0\)
(đúng hiển nhiên)
Đẳng thức xảy ra khi $a=b=c.$
Em xem lại đoạn:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{4c}{a+b+2c}=\frac{(a-b)^2(a+b+c)}{(b+c)(c+a)(a+b+2c)}\) bị nhầm rồi nè.
\(\sqrt{\dfrac{a}{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)
Tương tự: \(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c}\) ; \(\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)
Cộng vế:
\(VT\ge\dfrac{2a+2b+2c}{a+b+c}=2\)
Dấu "=" ko xảy ra nên \(VT>2\)
Lời giải:
Do $a+b+c=1$ nên:
\(\text{VT}=\sqrt{\frac{ab}{c(a+b+c)+ab}}+\sqrt{\frac{bc}{a(a+b+c)+bc}}+\sqrt{\frac{ca}{b(a+b+c)+ac}}\)
\(=\sqrt{\frac{ab}{(c+a)(c+b)}}+\sqrt{\frac{bc}{(a+b)(a+c)}}+\sqrt{\frac{ca}{(b+c)(b+a)}}\)
Áp dụng BĐT AM-GM:
\(\sqrt{\frac{ab}{(c+a)(c+b)}}\leq \frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)
\(\sqrt{\frac{bc}{(a+b)(a+c)}}\leq \frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{c+a}\right)\)
\(\sqrt{\frac{ca}{(b+c)(b+a)}}\leq \frac{1}{2}\left(\frac{c}{b+c}+\frac{a}{b+a}\right)\)
Cộng theo vế:
\(\Rightarrow \text{VT}\leq \frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
Ta chứng minh 2 bất đẳng thức phụ sau: với x, y, z dương thì:
\(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\left(1\right)\)
\(\left(1+x\right)\left(1+y\right)\left(1+z\right)\ge\left(1+\sqrt[3]{xyz}\right)^3\left(2\right)\)
+ Chứng minh BĐT (1), sử dụng BĐT AM - GM:
\(x^4+x^4+y^4+z^4\ge4x^2yz\)
\(y^4+y^4+x^4+z^4\ge4xy^2z\)
\(z^4+z^4+x^4+y^4\ge4xyz^2\)
Cộng dồn lại ta có: \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)
+ Chứng minh BĐT (2). Ta có:
\(\left(1+x\right)\left(1+y\right)\left(1+z\right)=1+x+y+z+xy+yz+xyz\ge1+3\sqrt[3]{xyz}+3\sqrt[3]{x^2y^2z^2}+xyz=\left(1+\sqrt[3]{xyz}\right)^3\)
Bây giờ ta quay lại chứng minh BĐT ở đề.
BĐT cần chứng minh tương đương với BĐT sau:
\(\sqrt[4]{\left(1+\dfrac{1}{a}\right)^4+\left(1+\dfrac{1}{b}\right)^4+\left(1+\dfrac{1}{c}\right)^4}\ge\sqrt[4]{3}+\dfrac{\sqrt[4]{243}}{2+abc}\)
\(\Leftrightarrow\left(1+\dfrac{1}{a}\right)^4+\left(1+\dfrac{1}{b}\right)^4+\left(1+\dfrac{1}{c}\right)^4\ge3\left(1+\dfrac{3}{2+abc}\right)^4\)
Sử dụng BĐT (1) ta có:
\(\left(1+\dfrac{1}{a}\right)^4+\left(1+\dfrac{1}{b}\right)^4+\left(1+\dfrac{1}{c}\right)^4\ge\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\left(3+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Sử dụng BĐT (2) và BĐT AM - GM ta có:
\(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\left(3+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(1+\dfrac{1}{\sqrt[3]{abc}}\right)^3\left(3+\dfrac{3}{\sqrt[3]{abc}}\right)\)
\(\Rightarrow\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\left(3+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\left(1+\dfrac{1}{\sqrt[3]{abc.1.1}}\right)^4\ge3\left(1+\dfrac{3}{2+abc}\right)^4\)
Vậy BĐT đã được chứng minh. Đẳng thức xảy ra <=> a = b = c.
Mình làm được rồi, cảm ơn các bạn