Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2a+b+c}=\dfrac{a}{a+b+c+a}\le\dfrac{a}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{c+a}\right)\\\dfrac{b}{a+2b+c}=\dfrac{b}{a+b+b+c}\le\dfrac{b}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\\\dfrac{c}{a+b+2c}=\dfrac{c}{a+c+b+c}\le\dfrac{c}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\end{matrix}\right.\)
\(\Rightarrow VT\le\dfrac{a}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+\dfrac{b}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)+\dfrac{c}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\)
\(\Rightarrow VT\le\dfrac{a}{4\left(a+b\right)}+\dfrac{a}{4\left(a+c\right)}+\dfrac{b}{4\left(a+b\right)}+\dfrac{b}{4\left(b+c\right)}+\dfrac{c}{4\left(a+c\right)}+\dfrac{c}{4\left(b+c\right)}\)
\(\Rightarrow VT\le\left[\dfrac{a}{4\left(a+b\right)}+\dfrac{b}{4\left(a+b\right)}\right]+\left[\dfrac{b}{4\left(b+c\right)}+\dfrac{c}{4\left(b+c\right)}\right]+\left[\dfrac{c}{4\left(a+c\right)}+\dfrac{a}{4\left(a+c\right)}\right]\)
\(\Rightarrow VT\le\dfrac{a+b}{4\left(a+b\right)}+\dfrac{b+c}{4\left(b+c\right)}+\dfrac{c+a}{4\left(c+a\right)}\)
\(\Rightarrow VT\le\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{a}{2a+b+c}+\dfrac{b}{a+2b+c}+\dfrac{c}{a+b+2c}\le\dfrac{3}{4}\) ( đpcm )
Dấu "=" xảy ra khi \(a=b=c\)
Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) với a , b > 0
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{bc}{2a+b+c}=\dfrac{bc}{a+b+a+c}\le\dfrac{bc}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\\\dfrac{ca}{a+2b+c}=\dfrac{ca}{a+b+b+c}\le\dfrac{ca}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\\\dfrac{ab}{a+b+2c}=\dfrac{ab}{a+c+b+c}\le\dfrac{ab}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\end{matrix}\right.\)
\(\Rightarrow VT\le\dfrac{bc}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+\dfrac{ca}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)+\dfrac{ab}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\)
\(\Rightarrow VT\le\dfrac{bc}{4\left(a+b\right)}+\dfrac{bc}{4\left(a+c\right)}+\dfrac{ca}{4\left(a+b\right)}+\dfrac{ca}{4\left(b+c\right)}+\dfrac{ab}{4\left(a+c\right)}+\dfrac{ab}{4\left(b+c\right)}\)
\(\Rightarrow VT\le\left[\dfrac{bc}{4\left(a+b\right)}+\dfrac{ca}{4\left(a+b\right)}\right]+\left[\dfrac{bc}{4\left(a+c\right)}+\dfrac{ab}{4\left(a+c\right)}\right]+\left[\dfrac{ca}{4\left(b+c\right)}+\dfrac{ab}{4\left(b+c\right)}\right]\)
\(\Rightarrow VT\le\dfrac{bc+ca}{4\left(a+b\right)}+\dfrac{bc+ab}{4\left(a+c\right)}+\dfrac{ca+ab}{4\left(b+c\right)}\)
\(\Rightarrow VT\le\dfrac{c\left(a+b\right)}{4\left(a+b\right)}+\dfrac{b\left(c+a\right)}{4\left(a+c\right)}+\dfrac{a\left(b+c\right)}{4\left(b+c\right)}\)
\(\Rightarrow VT\le\dfrac{a+b+c}{4}\)
\(\Leftrightarrow\dfrac{bc}{2a+b+c}+\dfrac{ca}{a+2b+c}+\dfrac{ab}{a+b+2c}\le\dfrac{a+b+c}{4}\) ( đpcm )
Áp dụng bất đẳng thức Cauchy-Schwarz ta có:
\(\dfrac{1}{2a^2+b^2}=\dfrac{1}{a^2+a^2+b^2}\le\dfrac{1}{9}\left(\dfrac{1}{a^2}+\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\)
\(\left\{{}\begin{matrix}\dfrac{1}{2b^2+c^2}\le\dfrac{1}{9}\left(\dfrac{1}{b^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\\\dfrac{1}{2c^2+a^2}\le\dfrac{1}{9}\left(\dfrac{1}{c^2}+\dfrac{1}{c^2}+\dfrac{1}{a^2}\right)\end{matrix}\right.\)
Cộng theo vế:
\(L\le\dfrac{1}{9}\left(\dfrac{3}{a^2}+\dfrac{3}{b^2}+\dfrac{3}{c^2}\right)=\dfrac{1}{9}\left[3\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\right]=\dfrac{1}{9}\)
\(BDT\Leftrightarrow\dfrac{1}{4a}+\dfrac{1}{4b}+\dfrac{1}{4c}\ge\dfrac{1}{2a+b+c}+\dfrac{1}{2b+c+a}+\dfrac{1}{2c+a+b}\)
Áp dụng BĐT \(\dfrac{1}{nht}+\dfrac{1}{is}+\dfrac{1}{the}+\dfrac{1}{best}\ge\dfrac{16}{nht+is+the+best}\):
\(\dfrac{1}{2a+b+c}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VP\le\dfrac{4}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4a}+\dfrac{1}{4b}+\dfrac{1}{4c}\)
\("="\Leftrightarrow a=b=c\)
Ta có : \(a+b+c=3\Rightarrow a^2+b^2+c^2\ge3\)
Theo BĐT AM - GM ta có :
\(a^4+b^2\ge2a^2b\)
\(b^4+c^2\ge2b^2c\)
\(c^4+a^2\ge2c^2a\)
\(2a^2b^2+2a^2\ge4a^2b\)
\(2b^2c^2+2b^2\ge4b^2c\)
\(2c^2a^2+2c^2\ge4c^2a\)
Cộng từng vế BĐT ta được :
\(\left(a^2+b^2+c^2\right)^2+3\left(a^2+b^2+c^2\right)\ge6\left(a^2b+b^2c+c^2a\right)\)
\(\Rightarrow a^2b+b^2c+c^2a\le\dfrac{3^2+3^2}{6}=3\)
Theo BĐT Cauchy schwarz dưới dạng en-gel ta có :
\(VT\ge\dfrac{9}{6+a^2b+b^2c+c^2a}=\dfrac{9}{9}=1\)
Dấu bằng xảy ra khi \(a=b=c=1\)
Viết lại BĐT:\(\dfrac{a^2b}{a^2b+2}+\dfrac{b^2c}{b^2c+2}+\dfrac{c^2a}{c^2a+2}\le1\)
Áp dụng BĐT AM-GM:
\(VT\le\sum\dfrac{a^2b}{3\sqrt[3]{a^4b^2}}=\dfrac{1}{3}\left(\sqrt[3]{a^2b}+\sqrt[3]{b^2c}+\sqrt[3]{c^2a}\right)\)
\(\le\dfrac{1}{9}\left(3a+3b+3c\right)=1\)
Suy ra đpcm
Lời giải:
Ta có: \(a^2b+b^2c+c^2a\geq \frac{9a^2b^2c^2}{1+2a^2b^2c^2}\)
\(\Leftrightarrow (a^2b+b^2c+c^2a)(1+2a^2b^2c^2)\geq 9a^2b^2c^2\)
\(\Leftrightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^3+2a^3b^2c^4\geq 3a^2b^2c^2(a+b+c)(*)\)
--------------------------
Áp dụng BĐT AM-GM ta có:
\(a^2b+a^4b^3c^2+a^3b^2c^4\geq 3\sqrt[3]{a^9b^6c^6}=3a^3b^2c^2\)
\(b^2c+a^2b^4c^3+a^4b^3c^2\geq 3a^2b^3c^2\)
\(c^2a+a^3b^2c^4+a^2b^4c^3\geq 3a^2b^2c^3\)
Cộng theo vế:
\(\Rightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^3+2a^3b^2c^4\geq 3a^2b^2c^2(a+b+c)\)
Vậy $(*)$ đúng
Do đó ta có đpcm
Dấu bằng xảy ra khi $a=b=c=1$
\(\dfrac{a}{a+\left(a+b+c\right)}\le\dfrac{a}{16}\left(\dfrac{1}{a}+\dfrac{3^2}{a+b+c}\right)\)
Tương tự và cộng lại là được