Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phân tích n^3 + 3n^2 + 2n thảnh n.(n+1).(n+2) chia hết cho 6 vì chia hết cho 2 và 3 chia hết cho 15 là chia hết cho 3 với 5 nha
áp dụng cosi a^2+1>=2a tương tự và cộng vế tương ứng suy ra đpcm
\(a^2+b^2+2\ge2\left(a+b\right)\)
\(\Leftrightarrow a^2+b^2+2-2\left(a+b\right)\ge0\)
\(\Leftrightarrow a^2+b^2+2-2a-2b\ge0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}b-1=0\\b-1=0\end{cases}}\)\(\Leftrightarrow a=b=1\)
Vậy ...
Bai 1: Cho abc=1
Tính A-B, biết:
A=(a+(1/a)2+(b+(1/b)2+(c+(1/c)2
B=(a+(1/a)(b+(1/b)(c+(1/c)
Bạn nhân 2 cả 3 câu rồi phân tích ra hằng đẳng thức là được
Ta có: a + b + c = 0
<=> a2 + b2 + c2 + 2(ab + bc + ac) = 0
<=> a2 + b2 + c2 = -2(ab + bc + ac)
<=> a4 + b4 + c4 + 2(a2b2 + b2c2 + a2c2 = 4[a2b2 + b2c2 + a2c2 + 2abc(a + b + c)] (vì a + b + c= 0)
<=> a4 + b4 + c4 + 2(a2b2 + b2c2 + a2c2) = 4(a2b2 + b2c2 + a2c2)
<=> a4 + b4 + c4 = 2(a2b2 + b2c2 + a2c2) (đpcm)
b) Từ a4 + b4 + c4 = 2(a2b2 + b2c2 + a2c2)
<=> (a4 + b4 + c4)/2 = a2b2 + b2c2 + a2c2 + 2abc(a + b + c) (vì a + b + c) = 0
<=> (a4 + b4 + c4)/2 = (ab + bc + ac)2
<=> a4 + b4 + c4 = 2(ab + bc + ac)2 (đpcm)
c) Từ a4 + b4 + c4 = 2(a2b2 + b2c2 + a2c2)
<=> 2(a4 + b4 + c4) = a4+ b4 + c4 + 2(a2b2 + b2c2 + a2c2)
<=> 2(a4 + b4 + c4) = (a2 + b2 + c2)2
<=> a4 + b4 + c4 = (a2 + b2 + c2)2/2 (đpcm)