Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nguyễn Việt Lâm DƯƠNG PHAN KHÁNH DƯƠNG Mysterious Person help
Do \(a,b,c>\dfrac{25}{4}\Rightarrow\) các mẫu số đều dương
Áp dụng BĐT Cauchy:
\(M\ge3\sqrt[3]{\dfrac{abc}{\left(2\sqrt{b}-5\right)\left(2\sqrt{c}-5\right)\left(2\sqrt{a}-5\right)}}\)
\(\Rightarrow M\ge3\sqrt[3]{\dfrac{5^3.abc}{5\left(2\sqrt{b}-5\right).5\left(2\sqrt{c}-5\right).5\left(2\sqrt{a}-5\right)}}\)
Ta có: \(\left\{{}\begin{matrix}5\left(2\sqrt{a}-5\right)\le\dfrac{\left(5+2\sqrt{a}-5\right)^2}{4}=a\\5\left(2\sqrt{b}-5\right)\le\dfrac{\left(5+2\sqrt{b}-5\right)^2}{4}=b\\5\left(2\sqrt{c}-5\right)\le\dfrac{\left(5+2\sqrt{c}-5\right)^2}{4}=c\end{matrix}\right.\)
\(\Rightarrow M\ge3\sqrt[3]{\dfrac{5^3.abc}{abc}}=3.5=15\)
\(\Rightarrow M_{min}=15\) khi \(a=b=c=25\)
Bạn áp dụng BĐT \(xy\le\dfrac{\left(x+y\right)^2}{4}\)
Dấu "=" xảy ra khi x=y
Hơn nữa, cũng áp dụng để tìm dấu "=" cuối bài, ta có \(5=2\sqrt{a}-5\Rightarrow2\sqrt{a}=10\Rightarrow a=25\), đó là lý do tại sao biết đẳng thức xảy ra tại a=b=c=25
2, a, \(a+\dfrac{1}{a}\ge2\)
\(\Leftrightarrow\dfrac{a^2+1}{a}\ge2\)
\(\Rightarrow a^2-2a+1\ge0\left(a>0\right)\)
\(\Leftrightarrow\left(a-1\right)^2\ge0\)( là đt đúng vs mọi a)
vậy...................
Câu 1:
\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)
\(=\sqrt{4+5}=3\)
\(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{5-\sqrt{3-2\sqrt{5}+3}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)
Cho a, b, c > 25/4, tìm GTNN của biểu thức: M=\(\dfrac{a}{2\sqrt{b}-5}+\dfrac{b}{2\sqrt{c}-5}+\dfrac{c}{2\sqrt{a}-5}\)
Bài 6:
a: \(\Leftrightarrow\sqrt{x^2+4}=\sqrt{12}\)
=>x^2+4=12
=>x^2=8
=>\(x=\pm2\sqrt{2}\)
b: \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\)
=>x+1=1
=>x=0
c: \(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}-20=0\)
=>\(\sqrt{2x}=2\)
=>2x=4
=>x=2
d: \(\Leftrightarrow2\left|x+2\right|=8\)
=>x+2=4 hoặcx+2=-4
=>x=-6 hoặc x=2
a: \(\dfrac{5}{3\sqrt{8}}=\dfrac{5\sqrt{2}}{3\cdot4}=\dfrac{5\sqrt{2}}{12}\)
\(\dfrac{2}{\sqrt{b}}=\dfrac{2\sqrt{b}}{b}\)
b: \(\dfrac{5}{5-2\sqrt{3}}=\dfrac{25+10\sqrt{3}}{13}\)
\(\dfrac{2a}{1-\sqrt{a}}=\dfrac{2a\left(1+\sqrt{a}\right)}{1-a}\)
c: \(\dfrac{4}{\sqrt{7}+\sqrt{5}}=\dfrac{4\left(\sqrt{7}-\sqrt{5}\right)}{2}=2\sqrt{7}-2\sqrt{5}\)
\(\dfrac{6a}{2\sqrt{a}-\sqrt{b}}=\dfrac{6a\left(2\sqrt{a}+\sqrt{b}\right)}{4a-b}\)