Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nguyễn Việt Lâm DƯƠNG PHAN KHÁNH DƯƠNG Mysterious Person help
Cho a, b, c > 25/4, tìm GTNN của biểu thức: M=\(\dfrac{a}{2\sqrt{b}-5}+\dfrac{b}{2\sqrt{c}-5}+\dfrac{c}{2\sqrt{a}-5}\)
`A)đk:x>=0,x ne 25`
`A=9=>A=(3+2)/(3-5)=-5/2`
`B)B=(3sqrtx-15+20-2sqrtx)/(x-25)`
`=(sqrtx+5)/(x-25)`
`=1/(sqrtx-5)`
`A=B.|x-4|`
`<=>A/B=|x-4|`
`<=>\sqrtx+2=|x-4|`
`<=>\sqrtx+2=(sqrtx+2)|sqrtx-2|`
`<=>|sqrtx-2|=1`
`+)sqrtx-2=1<=>x=9(tm)`
`+)sqrtx-2=-1<=>x=1(tm)`
Vậy `S={1,9}`
a, Thay x=9 vào biểu thức A ta có
\(A=\dfrac{\sqrt{9}+2}{\sqrt{9}-5}\)
\(A=\dfrac{3+2}{3-5}=\dfrac{5}{-2}=-2,5\)
Vậy A =-2,5 khi x=9
Bạn tham khảo:
Cho \(a,b,c>\dfrac{25}{4}.\)Tìm GTNN của \(Q=\dfrac{a}{2\sqrt{b}-5}+\dfrac{b}{2\sqrt{c}-5}+\dfrac{c}{2\sqrt{a}-5}\) - Hoc24
\(=\left(1^2+4^2\right)\left(a^2+\dfrac{1}{b^2}\right)\ge\left(1a+4.\dfrac{1}{b}\right)^2\\ \Rightarrow\sqrt{a^2+\dfrac{1}{vb^2}}\ge\dfrac{1}{\sqrt{17}}\left(a+\dfrac{4}{b}\right)\)
Tương tự
\(\sqrt{b^2+\dfrac{1}{c^2}}\ge\dfrac{1}{\sqrt{17}}\left(b+\dfrac{4}{c}\right)\\ \sqrt{c^2+\dfrac{1}{a^2}}\ge\dfrac{1}{\sqrt{17}}\left(c+\dfrac{4}{a}\right)\\ Do.đó:\\ Q\ge\dfrac{1}{\sqrt{17}}\left(a+b+c+\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)\ge\dfrac{1}{\sqrt{17}}\\ \left(a+b+c+\dfrac{36}{a+b+c}\right)\)
\(=\dfrac{1}{\sqrt{17}}\\ \left[a+b+c+\dfrac{9}{4\left(a+b+c\right)}+\dfrac{135}{4\left(a+b+c\right)}\right]\\ \ge\dfrac{3\sqrt{17}}{2}\)
Cái thứ nhất là tại sao có cái đầu tiên =)) cái thứ 2 dấu bằng xảy ra khi nào :V
c,M = \(\dfrac{A}{B}\) = \(\dfrac{\sqrt{x}-4}{\sqrt{x}+5}\) : \(\dfrac{\sqrt{x}+3}{\sqrt{x}+5}\)
M = \(\dfrac{A}{B}\) = \(\dfrac{\sqrt{x}-4}{\sqrt{x}+5}\) \(\times\) \(\dfrac{\sqrt{x}+5}{\sqrt{x}+3}\)
M = \(\dfrac{A}{B}\) = \(\dfrac{\sqrt{x}-4}{\sqrt{x}+3}\) = \(\dfrac{\sqrt{x}+3-7}{\sqrt{x}+3}\)
M = 1 - \(\dfrac{7}{\sqrt{x}+3}\)
M \(\in\) Z ⇔ 7 ⋮ \(\sqrt{x}\) + 3 vì \(\sqrt{x}\) ≥ 0 ⇒ \(\sqrt{x}\) + 3 ≥ 3 ⇒ 0< \(\dfrac{7}{\sqrt{x}+3}\) ≤ \(\dfrac{7}{3}\)
⇒ M Đạt giá trị nguyên lớn nhất ⇔ \(\dfrac{7}{\sqrt{x}+3}\) đạt giá trị nguyên nhỏ nhất ⇔ \(\dfrac{7}{\sqrt{x}+3}\) = 1 ⇔ \(\sqrt{x}\) + 3 = 7 ⇔ \(\sqrt{x}\) = 4 ⇔ \(x\) = 16
Mnguyên(max) = 1 - 1 = 0 xảy ra khi \(x\) = 16
Do \(a,b,c>\dfrac{25}{4}\Rightarrow\) các mẫu số đều dương
Áp dụng BĐT Cauchy:
\(M\ge3\sqrt[3]{\dfrac{abc}{\left(2\sqrt{b}-5\right)\left(2\sqrt{c}-5\right)\left(2\sqrt{a}-5\right)}}\)
\(\Rightarrow M\ge3\sqrt[3]{\dfrac{5^3.abc}{5\left(2\sqrt{b}-5\right).5\left(2\sqrt{c}-5\right).5\left(2\sqrt{a}-5\right)}}\)
Ta có: \(\left\{{}\begin{matrix}5\left(2\sqrt{a}-5\right)\le\dfrac{\left(5+2\sqrt{a}-5\right)^2}{4}=a\\5\left(2\sqrt{b}-5\right)\le\dfrac{\left(5+2\sqrt{b}-5\right)^2}{4}=b\\5\left(2\sqrt{c}-5\right)\le\dfrac{\left(5+2\sqrt{c}-5\right)^2}{4}=c\end{matrix}\right.\)
\(\Rightarrow M\ge3\sqrt[3]{\dfrac{5^3.abc}{abc}}=3.5=15\)
\(\Rightarrow M_{min}=15\) khi \(a=b=c=25\)
Bạn áp dụng BĐT \(xy\le\dfrac{\left(x+y\right)^2}{4}\)
Dấu "=" xảy ra khi x=y
Hơn nữa, cũng áp dụng để tìm dấu "=" cuối bài, ta có \(5=2\sqrt{a}-5\Rightarrow2\sqrt{a}=10\Rightarrow a=25\), đó là lý do tại sao biết đẳng thức xảy ra tại a=b=c=25