K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2020

a) xét tam giác BOM và tam giác CON ta có

BM=CN (gt)

OB=OC=R

\(\widehat{OBM}=\widehat{OCN}=30^0\)(do tam giác ABC đều )

=> tam giác BOM = tam giác CON(c.g.c)

suy ra OM=ON hay tam giác OMN cân tại O , do I là trung điểm của MN 

suy ra \(OI\perp MN\Rightarrow\widehat{OIM}=\widehat{OHM}=90^0\)nên tứ giác OMHI nội tiếp (có 2 đỉnh liên tiếp I,H cùng nhìn OM góc =90 độ )

b) Do điểm P nằm trên trung trực cạnh MN nên

PM=PN (1)

ta có \(180^0=\widehat{OMB}+\widehat{OMC}=\widehat{OMB}+\widehat{ONC}\)

=> tứ giác OMNC nội tiếp ( tổng 2 góc đối = 180 độ )

nên \(\hept{\begin{cases}\widehat{MON}=180^0-\widehat{NCM}=120^0\\\widehat{POM}=\widehat{PON}=120^0\end{cases}}\)

suy ra \(\widehat{POM}+\widehat{PBM}=180^0=>\)tứ giác PBMO nội tiếp nên \(\widehat{OPM}=\widehat{OBM}=30^0\)

CM  tương tự ta cx có \(\widehat{OPN}=\widehat{OAN}=30^0=>\widehat{MPN}=60^0\)(2)

=> từ (1) zà (2) ,tam giác PMN đều

c) Từ CM ở câu a ,b 

=>\(\widehat{OMN}=\widehat{OHI}=\widehat{OCN}=30^0\Rightarrow HI//AB\)

gọi K là trung điểm của AC thì  H,I ,K thẳng hàng

tam giác IAB có AB ko đổi nên chi vi tam giác nhỏ nhất khi IA+IB nhỏ nhất . ĐƯờng thẳng HI cố định . Gọi D là điểm đối xứng B qua HI thì điểm D có định , suy ra độ dài AD ko đổi 

ta có \(IB=ID\Rightarrow IA+IB=IA+ID\ge AD\)

dấu = xảy ra khi zà chỉ khi A,D ,I thẳng hàng. 

Tức đểm I chính là giao điểm của AD và HK

Mặt khác ta dễ CM đc AHKD là hình bình hành

Nên dấu "=" xảy ra khi I là trung điểm của HK , khi đó \(M\equiv H\)

zậy ...

25 tháng 4 2017

a b o e f n m h q

A, DỄ DÀNG NHẬN THẤY AF VÀ BE LÀ CÁC TIA PHÂN GIÁC ( DO TAM GIÁC ABC ĐỀU)

=> CO LÀ TIA PHÂN GIÁC CỦA GÓC ACB

=> ACO = 30

DỄ DÀNG TÍNH ĐƯỢC OBC = 30

=> OBC = ACO

DO TAM GIÁC ABC ĐỀU => O LÀ GIAO ĐIỂM CỦA 3 ĐƯỜNG TRUNG TRỰC

=> OB = OC

TỪ ĐÓ DỄ DÀNG CHỨNG MINH ĐƯỢC TAM GIÁC OBM = TAM GIÁC OCN ( C.G.C)

=> OM = ON

B,  KẺ FH VUÔNG GÓC VỚI EF, NQ VUÔNG GÓC VỚI EF

DO CF = AE , CN = BM

=> MF = NE

LẠI CÓ GÓC NEQ = CEF = CFE = 60

=> NEQ = CFE

TỪ ĐÓ DỄ DÀNG CHỨNG MINH ĐƯỢC TAM GIÁC NQE = TAM GIÁC MHF ( G.C.G)

=> NQ = MH

TA CÓ NE SONG SONG VỚI MH , NQ = MH

=> MQNH LÀ HÌNH BÌNH HÀNH

=> QH CẮT MN TẠI TRUNG ĐIỂM CỦA MN

MÀ I LÀ TRUNG ĐIỂM CỦA MN

=> I THUỘC HQ

=> I THUỘC EF

=> ĐPCM

C, BÀI NÀY TỰ VẼ HÌNH NHÉ

TỪ M,N KỂ ĐƯỜNG VUÔNG GÓC VỚI AB CẮT AB TẠI H VÀ K. TỪ M KỂ ĐƯỜNG VUÔNG GÓC VỚI NK CẮT NK TẠI Q

=> MN LỚN HƠN HOẶC BẰNG MQ

MÀ MQ =HK

=> MN LỚN HƠN HOẶC BẰNG HK

MẶT KHÁC KA + HB = 1/2 AN + 1/2 BM = 1/2 AB = 1/2 BC = 1/2 AC

=> HK = 1/2 AB

=> MN LỚN HƠN HOẶC BẰNG 1/2AB

DẤU BẰNG XẢY RA KHI VÀ CHỈ KHI M VÀ N LÀ TRUNG ĐIỂM CỦA AC VÀ BC

( MÌNH MỚI HỌC LỚP 7)

25 tháng 4 2017

Nhac cau 3

Tu M,N ke duong vuong goc voi AB cat AB tai H va K.Tu M ke duong vuong goc voi NK cat NK tai Q

=>MN\(_{\ge}\)MQ. Ma MQ=HK

=>MN\(\ge\)HK

Mat \(\ne\)KA+HB=1/2AN+1/2BM=1/2AB=1/2BC=1/2CA

=>HK=1/2AB

=>MN\(\ge\)1/2AB.dau bang xay ra khi M,N la trung diem cua cac canh

11 tháng 2 2016

a) góc BMN = góc ACN => đpcm 
b) góc MKC = sđ BN + sđ MC = sđ AN+ sđ AM = góc NCM  => đpcm 

c) góc ABK= góc CBK => BK là đg p.g
tg tự CK là đg p.g

=>đpcm