Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là phân giác của góc BAC
=>HB=HC
b: HB=HC=3cm
=>AH=4cm
AH là phân giác của góc BAC
=>góc BAH=góc CAH
c: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
=>HM=HN
=>ΔHMN cân tại H
a)
Xét 2 tam giác vuông ABC và HAC có:
\(\widehat{C}\) chung
=> tg ABC \(\sim\) td HAC (g.g)
=> \(\widehat{ABC}=\widehat{HAC}\)
b)
Xét 2 tg vuông ACB và HAB có:
\(\widehat{B}\) chung
=> tg ACB \(\sim\) tg HAB (g.g)
=> \(\widehat{ACB}=\widehat{HAB}\)
a) Xét \(\Delta ABH\)và \(\Delta AHC\)có:
AB = AC (gt)
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)
\(\Rightarrow\Delta ABH=\Delta AHC\left(Ch-gn\right)\)
\(\Rightarrow HB=HC\)(2 cạnh tương ứng)
\(\Rightarrow\widehat{BAH}=\widehat{HAC}\)
b) Ta có : HB=HC (cma )
Mà HB + HC = BC
=> HB = HC = 4 cm
Xét \(\Delta ABH\)vuông tại H có : AB2=HA2+BH2 (Pytago)
=> AH2 = AB2 - HB2
=> AH2 = 52 - 42 = 9
=> AH = 3 (cm)
c) Xét \(\Delta HBD\)và \(\Delta HEC\)có:
HB = HC (cma)
\(\widehat{HDB}=\widehat{HEC}\left(=90^o\right)\)
=> \(\Delta HBD=\Delta HEC\left(Ch-gn\right)\)
=> HD = HC ( 2 cạnh tương ứng)
=> \(\Delta HDE\)cân tại H
1) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
Bạn tự vẽ hình nha.
a) Xét tam giác ABH và tam giác ACH
Ta có: Góc AHB = Góc AHC ( = 90 độ )
AB = AC ( Vì tam giác ABC cân )
Góc ABH = Góc ACH ( Vì tam giác ABC cân )
=> Tam giác ABH = Tam giác ACH ( ch-gn )
=> HB = HC ( hai cạnh tương ứng )
Góc BAH = Góc CAH ( Hai góc tương ứng 0
=> Đpcm
b) Vì HB = HC ( câu a )
Mà BC = HB + HC
=> HB = HC = BC / 2 = 8 / 2 = 4 cm
Xét tam giác ABH vuông tại H
=> AH2 + BH2 = AB2
Hay AH2 + 42 = 52
=> AH2 = 52 - 42
=> AH2 = 9
=> AH = 3
c) Xét tam giác AHD và tam giác AHE
Ta có: Góc ADH = Góc AEH ( = 90 độ )
AH là cạnh huyển chung
Góc BAH = Góc CAH ( câu a )
=> Tam giác AHD = Tam giác AHE ( ch-gn )
=> HD = HE ( Hai cạnh tương ứng )
=> Tam giác HDE cân tại H
=> Đpcm
b: Vì góc ABC là góc ngoài cua ΔAHB
nên góc ABC=góc AHB+góc HAB=90 độ+góc HAB
Xét ΔHAC vuông tại H có góc HAC+góc ACB=90 độ
=>góc ACB=90 độ-góc HAC
c: 1/2(góc ABC-góc ACB)
=1/2(180 độ-góc ABH-90 độ+góc HAC)
=1/2(90 độ-góc ABH+góc HAC)
=góc DAH
a: Xét ΔHAB vuông tại H có \(\widehat{ABH}=45^0\)
nên ΔHAB vuông cân tại H
b: \(AB=\sqrt{AH^2+HB^2}=AH\sqrt{2}\)