\(\widehat{A}=75^0,\widehat{B}=45^0.\) Trên AC lấy điểm D sao cho
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2022

lkjytreedfyhgfdfgff

24 tháng 2 2022

lkjhgfgy6tyur65445676t 7 777676r64576556756777777777777/.,mnbvfggjhyjuhjtyj324345

9 tháng 2 2019

kẻ thêm đi bà

nói rõ đi bà 

23 tháng 2 2022

Từ các cặp tam giác đồng dạng ta có:

\(BE=\frac{AB^2}{BC};CD=\frac{BC^2}{CA};AF=\frac{CA^2}{AB}\)

\(\Rightarrow AF+BE+CD=\frac{AB^2}{BC}+\frac{BC^2}{CA}+\frac{CA^2}{AB}\ge\frac{\left(AB+BC+CA\right)^2}{AB+BC+CA}=C_{ABC}\)

Dấu bằng xảy ra khi \(\frac{AB}{BC}=\frac{BC}{CA}=\frac{CA}{AB}=\frac{AB+BC+CA}{BC+CA+AB}=1\) hay tam giác ABC đều.

22 tháng 2 2022

jjjjjjjqqqqqqqqaaaaaaaaooooooooooyyyyyyyyyyrrrrrrriggigigigigiiggigigigggigiigigigigigiggigigi

 Trên tia đối AB lấy I sao cho AI = AB 
- Vẽ hình chữ nhật AINC ( IN // AC ; IN = AC )
Do AB = 1/3 AC => AD = AB => AD=AI . Lấy M thuộc IN sao cho IM = AD 
Ta có hình vuông IAMD => IA = IM = MD = DA 
Xét [​IMG]MBI và [​IMG]CMN 
MI=NC (và IANC là hình chữ nhật)
BI=MN ( vì[​IMG] và IA = IM \Rightarrow [​IMG])
[​IMG] (gt)
\Leftrightarrow [​IMG]MBI = [​IMG]CMI (c - g - c)
\Rightarrow [​IMG] ; BM = CM \Rightarrow [​IMG] BMC cân ở M (|-)1)
Xét [​IMG]BIM và [​IMG]EAB 
AB = MI 
AE = BI 
[​IMG]
\Leftrightarrow [​IMG]BIM = [​IMG]EAB (c - g - c)
\Rightarrow [​IMG] (góc tương ứng)

Ta có:
[​IMG]
Mà: [​IMG] 
\Rightarrow [​IMG] 
\Rightarrow [​IMG]BMC vuông ở M :)-*2)

Từ (|-)1) và :)-*2) 
\Rightarrow [​IMG]MCB vuông cân ở M 
\Rightarrow [​IMG] hay [​IMG] 
Lại có:
[​IMG]
\Rightarrow [​IMG] (đpcm)
:-*:-*:-*:-*:-*|-)|-)|-):-SS:-SS:D:D:D:D:D;););)

;);)

Cách 1: 
Kẻ DM ∟ AC sao cho DM = AB. 
Dễ dàng chứng minh Δ DMC = Δ AEB (c - g - c) 
=> ^DCM = ^AEB và BE = MC (1) 
Δ BMD = Δ BED (c - g - c) 
=> ^BMD = ^BED và BM = BE (2) 
(1) và (2) cho: 
^DCM = ^BMD và CM = MB 
=> Δ BMC cân tại M 
mà ^DMC + ^DCM = 90o (Δ MDC vuông) 
=> ^DMC + ^BMD = 90o 
=> Δ BMC vuông cân. 
=> BCM = 45o 
Mà ^ACB + ^DCM = ^BCM 
=> ^ACB + ^AEB = 45o (vì ^AEB = ^DCM (cmt)) 
Cách 2: 
Đặt AB = a 
ta có: BD = a√2 
Do DE/DB = DB/DC = 1/√2 
=> Δ DBC đồng dạng Δ DEB (c - g - c) 
=> ^DBC = ^DEB 
Δ BDC có ^ADB góc ngoài 
=> ^ADB = ^DCB + ^DBC 
hay ^ACB + ^AEB = 45o 
Cách 3 
ta có: 
tanAEB = AB/AE = 1/2 
tanACB = AB/AC = 1/3 
tan (AEB + ACB) = (tanAEB + tanACB)/(1 - tanAEB.tanACB) 
= (1/2 + 1/3)/(1 - 1/2.1/3) = 1 = tan45o 
Vậy ^ACB + ^AEB = 45o.

27 tháng 2 2020

câu a) mình nghĩ chứng minh ABD cân chứ ạ, sao lại ABC

27 tháng 2 2020

Gọi H là trung điểm của AC. \(\Delta\)DAC cân tại D.

Do đó DH\(\perp\)AC và AH = \(\frac{1}{2}\)AC (1)

Vẽ AK \(\perp\)BC. Vì \(\Delta\)AKC vuông tại K và ^BCA = 300

nên AK = \(\frac{1}{2}\)AC (2)

Từ (1) và (2) suy ra AK = AH

Xét \(\Delta\)AKB và \(\Delta\)AHD có:

    ^AKB = ^AHD (=900)

    AK = AH(gt)

    ^BAK = ^DAH (=500)

Do đó  \(\Delta\)AKB = \(\Delta\)AHD (g.c.g)

=> AB = AD

Vậy \(\Delta\)ABD cân tại A(đpcm)

DD
10 tháng 7 2021

a) \(\left(sinA+cosA\right)^2=sin^2A+cos^2A+2sinAcosA=1+2sinAcosA\)

vì tam giác \(ABC\)nhọn nên \(0^o< \widehat{A}< 90^o\)nên \(sinA>0,cosA>0\Rightarrow2sinAcosA>0\)

nên \(\left(sinA+cosA\right)^2>1\Leftrightarrow sinA+cosA>1\)do \(sinA>0,cosA>0\).

b) Kẻ đường cao \(AH\).

Đặt \(HB=x\Rightarrow HC=a-x\).

Xét tam giác \(AHB\)vuông tại \(H\)\(AH=HB.tan\widehat{ABH}=xtan45^o=x\)

Xét tam giác \(AHC\)vuông tại \(H\)\(AH=HCtan\widehat{ACH}=\left(a-x\right)tan60^o=\sqrt{3}\left(a-x\right)\)

Ta có: \(x=\sqrt{3}\left(a-x\right)\Leftrightarrow x=\frac{\sqrt{3}}{1+\sqrt{3}}a\)

\(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}\frac{\sqrt{3}}{1+\sqrt{3}}a.a=\frac{3-\sqrt{3}}{4}a^2\).