\(\dfrac{gócC}{2}\) =
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

a)

Kẻ DH _I_ AB và DK _I_ AC.

\(\widehat{DHA}=\widehat{HAK}=\widehat{AKD}=90^0\)

=> AKDH là hình chữ nhật có AD là đường phân giác

=> AKDH là hình vuông

=> AK = KD = DH = HA

Tam giác KAD vuông cân tại A có:

\(AD=\sqrt{2}AK\)

\(\Rightarrow\dfrac{\sqrt{2}}{AD}=\dfrac{1}{AK}\left(1\right)\)

~*~*~*~*~

\(S_{DAB}+S_{DAC}=S_{ABC}\)

\(\Leftrightarrow\dfrac{1}{2}DH\times AB+\dfrac{1}{2}KD\times AC=\dfrac{1}{2}AB\times AC\)

\(\Leftrightarrow AK\times\left(AB+AC\right)=AB\times AC\)

\(\Leftrightarrow\dfrac{AB+AC}{AB\times AC}=\dfrac{1}{AK}\)

\(\Leftrightarrow\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{1}{AK}\left(2\right)\)

~*~*~*~*~

(1) và (2) => đpcm

23 tháng 6 2017

b)

Trên đoạn thẳng AB, lấy điểm E sao cho AD = AE.

AD là đường phân giác của tam giác ABC

\(\Rightarrow\widehat{DAB}=\widehat{DAC}=\dfrac{\widehat{BAC}}{2}=\dfrac{120^0}{2}=60^0\)

Tam giác ABC có AD là đường phân giác

=> \(\dfrac{BD}{AB}=\dfrac{DC}{AC}=\dfrac{BD+DC}{AB+AC}=\dfrac{BC}{AB+AC}\) (tính chất của dãy tỉ số bằng nhau)

=> \(\dfrac{BD}{BC}=\dfrac{AB}{AB+AC}\)

Tam giác ADE có: AD = AE, \(\widehat{DAE}=60^0\)

=> Tam giác ADE đều

=> \(\widehat{EDA}=\widehat{DAC}\left(=60^0\right)\) mà chúng nằm ở vị trí so le trong

=> ED // AC

\(\Rightarrow\dfrac{ED}{AC}=\dfrac{BD}{BC}=\dfrac{AB}{AB+AC}\)

\(\Rightarrow\dfrac{1}{AD}=\dfrac{AB+AC}{AB\times AC}=\dfrac{1}{AB}+\dfrac{1}{AC}\left(\text{đ}pcm\right)\left(ED=AD\right)\)

5 tháng 9 2017

Xem lại đề.

a: \(\dfrac{AB^2}{AC^2}=\dfrac{HB\cdot BC}{HC\cdot BC}=\dfrac{HB}{HC}\)

b: \(\dfrac{BD}{CE}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)

29 tháng 8 2017

2) Sửa lại là: HE.AB+HF.BC=AH.BC

Bài 2: 

Gọi tam giác cần có trong đề là ΔABC vuông tại A có \(\widehat{B}=\alpha\)

Ta có: \(\tan^2B+1=\left(\dfrac{AC}{AB}\right)^2+1=\dfrac{AC^2+AB^2}{AB^2}=\dfrac{BC^2}{AB^2}\)

\(\Leftrightarrow\tan^2B+1=1:\dfrac{AB^2}{BC^2}=\dfrac{1}{\cos^2B}\)(đpcm)