Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\overrightarrow{AB}=\left(-4;2\right)\)
\(\overrightarrow{BC}=\left(6;-3\right)\)
Vì \(\overrightarrow{BA}\cdot\overrightarrow{BC}=\overrightarrow{0}\) nên ΔABC vuông tại B
Cách làm
1. Từ phương trình 3 cạnh suy ra tọa độ 3 đỉnh của tam giác
2. Gọi D là chân đường phân giác trong góc A của ΔABC ⇒ \(\overrightarrow{BD}=\dfrac{AB}{AC}.\overrightarrow{DC}\)
3. Tâm đường tròn ngoại tiếp I của tam giác ABC là chân đường phân giác trong góc B của ΔABD
a: vecto AB=(1;1)
vecto AC=(2;6)
vecto BC=(1;5)
b: \(AB=\sqrt{1^2+1^2}=\sqrt{2}\)
\(AC=\sqrt{2^2+6^2}=2\sqrt{10}\)
\(BC=\sqrt{1^2+5^2}=\sqrt{26}\)
=>\(C=\sqrt{2}+2\sqrt{10}+\sqrt{26}\)
c: Tọa độ trung điểm của AB là:
x=(1+2)/2=1,5 và y=(-1+0)/2=-0,5
Tọa độ trung điểm của AC là;
x=(1+3)/2=2 và y=(-1+5)/2=4/2=2
Tọa độ trung điểm của BC là:
x=(2+3)/2=2,5 và y=(0+5)/2=2,5
d: ABCD là hình bình hành
=>vecto AB=vecto DC
=>3-x=1 và 5-y=1
=>x=2 và y=4
a: Tọa độ điểm A là:
\(\left\{{}\begin{matrix}4x+3y=-12\\3x+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{66}{7}\\y=\dfrac{60}{7}\end{matrix}\right.\)
Tọa độ điểm B là:
\(\left\{{}\begin{matrix}4x+3y=-12\\3x-4y=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{24}{25}\\b=-\dfrac{132}{25}\end{matrix}\right.\)
Tọa dộ điểm C là:
\(\left\{{}\begin{matrix}3x-4y=24\\3x+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\b=-\dfrac{9}{4}\end{matrix}\right.\)
b: Vì AK vuông góc với BC nên AK có phương trình là:
3x-4y+c=0(1)
Thay x=-66/7 và y=60/7 vào (1), ta được:
\(c+\dfrac{-198}{7}-\dfrac{240}{7}=0\)
hay c=438/7