Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
abc=100a+10b+c
ta có 3.(100a+10b+c)-10(30a+3b-2c)=300a+30b+3c-300a-30b+20c=23c chia hết cho 23
=>3.(100a+10b+c)-10.(30a+3b-2c) chia hết cho 23 vì abc chia hết cho 23 nên 3(100a+10b+c) chia hết cho 23 =>10(30a+3b-2c) chia hết cho 23=> 30a+3b-2c chia hết cho 23=> đpcm
abc=100a+10b+c
ta có 3.(100a+10b+c)-10(30a+3b-2c)=300a+30b+3c-300a-30b+20c=23c chia hết cho 23
=>3.(100a+10b+c)-10.(30a+3b-2c) chia hết cho 23 vì abc chia hết cho 23 nên 3(100a+10b+c) chia hết cho 23 =>10(30a+3b-2c) chia hết cho 23=> 30a+3b-2c chia hết cho 23=> đpcm
Ta có: 7a+3b⋮23⇒6(7a+3b)⋮237a+3b⋮23⇒6(7a+3b)⋮23
⇒6(7a+3b)+(4a+5b)⋮23⇒6(7a+3b)+(4a+5b)⋮23
⇒46a+23b⋮23⇒23(2a+b)⋮23⇒46a+23b⋮23⇒23(2a+b)⋮23(Đúng)
Vậy 4a+5b⋮23
ta có: 23a + 23b chia hết cho 23
=> 7a + 3b + 16a + 20b chia hết cho 23
=> 7a + 3b + 4(4a + 5b) chia hết cho 23
do 7a + 3b chia hết cho 23 nên 4(4a + 5b) chia hết cho 23
mà 4 không chia hết cho 23 nên 4a + 5b phải chia hết cho 23
tíck cho mình nhé
Ta có :
4 . ( 7a + 3b ) - 7. ( 4a + 5b ) = 28a + 12b - 28a + 35b = -23b
=> 4.( 7a + 3b ) - 23b = 7 . ( 4a + 5b )
Mà 4. ( 7a + 3b ) và -23b đều chia hết cho 23 nên 7 . ( 4a + 5b ) cũng chia hết cho 23
Vì 7 không chia hết cho 23 nên 4a + 5b chia hết cho 23
=> đpcm
Nếu 3a+4b chia hết cho 23 thì 8.(3a+4b)=24a+32b (1) chia hết cho 23
Ta xét biểu thức 3.(8a+3b)=24a+9b (2)
Lấy (1) trừ đi (2) được (24a+32b)-(24a+9b)=24a+32b-24a-9b=23b chia hết cho 23
Vậy 8.(3a+4b)-3.(8a+3b) chia hết cho 23
Mà 8.(3a+4b) chia hết cho 23
=> 3.(8a+3b) chia hết cho 23, mà (8;23)=1
=>8a+3b chia hết cho 23
Ngược lại thì bạn xét biểu thức 3.(8a+3b)-8.(3a+4b), làm tương tự như trên
30a+2b chia hết cho 13
=> (30a+2b)-(7a-21b) =30a+2b-7a+21b=23a+23b=23(a+b) chia hết cho 3
Vì 30a+2b chia hết cho 23 nên 7a-21b chia hết cho 23
\(\left(30a+2b\right)\) chia hết cho \(23\)
nên \(\left(30a+2b-23a-23b\right)\) cũng chia hết cho \(23\)
hay \(\left(7a-21b\right)\) chia hết cho \(23\)
a) \(A=2+2^2+2^3+...+2^{20}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{19}+2^{20}\right)\)
\(A=2\cdot\left(1+3\right)+2^3\cdot\left(1+3\right)+...+2^{59}\cdot\left(1+3\right)\)
\(A=3\cdot\left(2+2^3+...+2^{59}\right)\)
Vậy A chia hết cho 3
________
\(A=2+2^2+2^3+...+2^{20}\)
\(A=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\)
\(A=2\cdot\left(1+4\right)+2^2\cdot\left(1+4\right)+...+2^{58}\cdot\left(1+4\right)\)
\(A=5\cdot\left(2+2^2+...+2^{58}\right)\)
Vậy A chia hết cho 5
\(4\left(a+5b\right)+\left(19a+3b\right)=23a+23b⋮23\)
Mà \(a+5b⋮23\Rightarrow19a+3b⋮23\)
Ta có: 23a + 23b chia hết cho 23
=>\(7a+3b+16a+20b\) chia hết cho 23
=>\(7a+3b+4\left(4a+5b\right)\)chia hết cho 23
Theo đề bài: 7a + 3b chia hết cho 23
=> 4(4a + 5b) chia hết cho 23
Mà 4 không chia hết cho 23 nên 4a + 5b phải chia hết cho 23 (đpcm)
ta có: 23a + 23b chia hết cho 23
=> 7a + 3b + 16a + 20b chia hết cho 23
=> 7a + 3b + 4(4a + 5b) chia hết cho 23
do 7a + 3b chia hết cho 23 nên 4(4a + 5b) chia hết cho 23
mà 4 không chia hết cho 23 nên 4a + 5b phải chia hết cho 23