Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A D E I B C M N
a) Xét \(\Delta ABD\) và \(\Delta ACE\) ,có :
AD = AE ( Tam giác ADE cân tại A )
\(\widehat{ADE}=\widehat{AED}\) ( Tam giác ADE cân tại A )
BD = CE ( gt )
=> \(\Delta ABD=\Delta ACE\left(c.g.c\right)\)
=> AB = AC
=> \(\Delta ABC\) cân tại A
b) Xét \(\Delta BMD\) và \(\Delta CNE\) ,có :
BD = CE ( gt )
\(\widehat{BMD}=\widehat{CNE}=90^0\)
a) Xét ∆ADE cân tại A nên góc D = góc E
Xét ∆ABD và ∆ACE, ta có:
AD = AE (gt)
góc D = góc E (chứng minh trên)
DB = EC (gt)
Suy ra: ∆ABD = ∆ACE (c.g.c)
Suy ra: AB = AC (hai cạnh tương ứng)
Vậy ∆ABC cân tại A.
b) Xét hai tam giác vuông BMD và CNE, ta có:
góc BMD=góc CNE=90o
BD = CE (gt)
góc D = góc E (chứng minh trên)
Suy ra: ∆BMD = ∆CNE (cạnh huyền, góc nhọn)
Suy ra: BM = CN (hai cạnh tương ứng)
c) Ta có: ∆BMD = ∆CNE (chứng minh trên)
Suy ra: góc DBM=góc ECN (hai góc tương ứng)
góc DBM=góc IBC (đối đỉnh)
góc ECN = góc ICB (đối đỉnh)
Suy ra: góc IBC=góc ICB hay ∆IBC cân tại I.
d) Xét ∆ABI và ∆ACI, ta có:
AB = AC (chứng minh trên)
IB = IC (vì ∆IBC cân tại I)
AI cạnh chung
Suy ra: ∆ABI = ∆ACI (c.c.c) ⇒ góc BAI=góc CAI (hai góc tương ứng)
Vậy AI là tia phân giác của góc BAC
a) Tgiac ABC cân tại A => AB = AC và góc B = góc C
Xét tgiac ABD và ACE có:
+ AB = AC
+ góc B = C
+ BD = CE
=> tgiac ABD = ACE (cgc)
=> AD = AE
b) Xét tgiac BDF và CEG có:
+ BD = CE
+ góc B = góc C
+ góc BFD = CGE = 90 độ
=> tgiac BDF = CEG (ch-gn)
=> đpcm
c) Xét tgiac AFD và AGE có:
+ AD = AE (cmt)
+ góc FAD = GAE (vì tgiac ABD = ACE)
+ góc AFD = AGE = 90 độ
=> tgiac AFD = AGE (ch-gn)
=> góc ADF = AEG
=> góc EDH = DEH (hai góc đối đỉnh)
=> tgiac DEH cân tại H (đpcm)
XÉT TAM GIÁC ABD VÀ TAM GIÁC ACE CÓ
AB=AC(GT)
DB=CE (GT)
\(\widehat{ABD}+B1=180^O\)
\(\widehat{ACE}+\widehat{C_1}=180^0\)
=>\(\widehat{ABD}+\widehat{B_1}=\widehat{ACE}+\widehat{C_1}\)
MÀ GÓC B1 = GÓC C1
=>\(\widehat{ABD}=\widehat{ACE}\)
=>\(\Delta ADB=\Delta ACE\left(CGC\right)\)
=>AD=AE
=> \(\Delta ADE\) CÂN TẠI A
B,XÉT TAM GIÁC HBD VÀ TAM GIÁC CKE CÓ
DB=CE (GT)
\(\widehat{H}=\widehat{K}=90^0\)
\(\widehat{D}=\widehat{E}=90^0\) VÌ TAM GIÁC ADE CÂN TẠI A
=> TAM GIÁC DHB= TAM GIÁC CKE (GCG)
=>BH=CK(CẠNH TƯƠNG ỨNG)
C,XÉT TAM GIÁC ABM VÀ TAM GIÁC ACN CÓ
\(\widehat{M}=\widehat{N}=90^0\)
AB=AC (GT)
\(\widehat{NAC}=\widehat{MAB}\) VÌ (\(\widehat{A_1}+\widehat{A_2}=\widehat{A_2}+\widehat{A_3}\))
=>TAM GIÁC ABM = TAM GIÁC ACN (GCG)
=>BM=CN ( CẠNH TƯƠNG ỨNG)
-tự vẽ hình
a) xét tam giác ADB và tam giác AEC, ta có:
AD=AE(gt)
Góc ADB=Góc AEC(gt)
DB=CE(gt)
Vậy tam giác ADB = tam giác AEC (c-g-c)
=> AB=AC(cặp cạnh t/ứng)
=> ABC là tam giác cân tại A
b) Xét tam giác DMB và tam giác ENC, ta có:
DB=CE(gt)
Góc MDB=Góc NEC(gt)
Vậy tam giác DMB = tam giác ENC
=> BM=CN(cặp cạnh t/ứng)
=>góc MBD=góc NCE(cặp góc t/ứng)
c) ta thấy: góc MBD=góc CBI(đối đỉnh)
góc NCE=góc BCI(đối đỉnh)
=> góc CBI=góc BCI => tam giác IBC là tâm giác cân tại I
d) Xét tam giác BAI và tam giác CAI, ta có:
AB=AC(cmt)
BI=IC(tam giác IBC cân tại I)
AI là cạnh chung
Vậy tam giác BAI = tam giác CAI
=> góc BAI=IAC(cặp góc t/ứng)
=> AI là tia phân giác của BAC(đpcm)
1
a) trước tiên chứng minh\(\widehat{ABM}=\widehat{ACN}\)
rồi mới chứng minh 2 tam giác ABM và ACN bằng nhau
suy ra AM = AN
b)Đầu tiên chứng minh\(\widehat{ABH}=\widehat{ACK}\)
rồi chứng minh hai tam giác ABH và ACK bằng nhau
suy ra BH = CK
c) vì hai tam giác ABH và ACK bằng nhau (cmt)
nên AH = AK
d) ta có \(\widehat{AMB}=\widehat{ACN}\)(hai tam giác ABH và ACK bằng nhau)
nên dễ cm \(\widehat{MBH}=\widehat{NCK}\)
còn lại tự cm
e) dễ cm tam giác ABC đều
vẽ \(BH\perp AC\)
nên BH vừa là đường cao; phân giác và trung tuyến
dễ cm \(\Delta BHC=\Delta NKC\)
nên \(\widehat{BCH}=\widehat{NCK}=60^0\)
từ đó dễ cm AMN cân và OBC dều