Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Ta có cân tại
Xét có
b.Từ câu a
Mà
là hình thang cân
Lời giải có tại đây:
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-can-tai-a-cac-phan-giac-bd-cea-xac-dinh-tu-giac-bedcb-tinh-chu-vi-tu-giac-do-biet-bc-15cm-ed-9cm.1953042881633
a) Tứ giác BECD là hình thang do AB=AC (t/c 2 cạnh bên bằng nhau hình thang cân)
b)
c) Do A= 70 độ
Mà 2 góc đáy bằng nhau (t/c hình thang cân)
=> 180 độ - 70 độ = 110 độ
=> Góc B = góc C = 1/2 110 độ
=> Góc B = góc C = 55 độ (đpcm)
Bài 2:
a: Xét ΔAEC vuông tại E và ΔADB vuông tại D có
AB=AC
góc A chung
Do đó: ΔAEC=ΔADB
b: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
=>BEDC là hình thang
mà góc EBC=góc DCB
nên BEDC là hình thang cân
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó: ΔEBC=ΔDCB
b: ΔEBC=ΔDCB
=>EB=DC
AE+EB=AB
AD+DC=AC
mà EB=DC và AB=AC
nên AE=AD
Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Xét tứ giác BEDC có ED//BC
nên BEDC là hình thang
Hình thang BEDC có \(\widehat{EBC}=\widehat{DCB}\)
nên BEDC là hình thang cân
a) Ta có :
\(AB=AC\) (Δ ABC cân tại A)
\(\Rightarrow AE+BE=AD+DC\)
mà \(AE=BE\) (CE là trung tuyến nên E là trung điểm AB)
\(AD=DC\) (BD là trung tuyến nên D là trung điểm AC)
\(\Rightarrow AE=AD\)
Xét Δ ABD và Δ ACE có :
\(AB=AC\) (Δ ABC cân tại A)
Góc A chung
\(AE=AD\left(cmt\right)\)
⇒ Δ ABD = Δ ACE (góc, cạnh, góc)
\(\Rightarrow BD=CE\)
b) Xét tứ giác BCDE có :
\(\widehat{EBC}=\widehat{DCB}\) (Δ ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}\))
\(BD=CE\left(cmt\right)\)
⇒ Tứ giác BCDE là hình thang cân
c) Ta có :
CE là trung tuyến Δ ABC
BD là trung tuyến Δ ABC
⇒ ED là đường trung bình Δ ABC
\(\Rightarrow ED=\dfrac{1}{2}BC\)
mà H là trung điểm BC (Δ ABC cân tại A nên AH vừa là đường cao và trung tuyến)
\(\Rightarrow ED=BH\)
Xét tứ giác BHDE có :
ED song song BH (BCDE là hình thang cân nên ED song song BC)
\(ED=BH\left(cmt\right)\)
⇒ Tứ giác BHDE là hình bình hành.
a)Ta có tam giác DBC =EBC(g.c.g)
\(\Rightarrow\)DB=EC
Ta có tam giác ADB=AEC(c.g.c)
\(\Rightarrow\)AD=AE
\(\Rightarrow\)Tam giác ADE cân
Mà D thuộc A;E thuộc AB
\(\Rightarrow\)Góc D = C (đồng vị)
\(\Rightarrow\) DE // BC
Mà BEDC là tứ giác \(\Rightarrow\) BEDC là hình thang
Mà góc B = C \(\Rightarrow\) BEDC là hình thang cân
b)Ta có : \(2\widehat{ABD}=\widehat{DBC}=\widehat{EBD}\)
\(\Rightarrow ED=BE=CD\left(Q.E.D\right)\)
c)Ta có : \(\widehat{A}=50^o\Rightarrow\widehat{B}=\widehat{C}=65^o\)
\(\Rightarrow\widehat{BED}=\widehat{CED}=115^o\left(Q.E.D\right)\)
Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
Xét ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)
Do đó: ED//BC
Xét tứ giác BEDC có ED//BC
nên BEDC là hình thang
mà EC=BD
nên BEDC là hình thang cân