Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có: tam giác ABC là tam giác cân tại A.
=> góc B= góc C
Vì BD và CE là phân giác góc B và C
=> góc DBC = góc EBD = góc DCE = góc ECB
Xét tam giác EBC và tam giác DBC có:
góc ECB = góc DBC
góc BCD = góc EBC
Chung cạnh BC
=> tam giác EBC = tam giác DCB( g.c.g)
=> EC = DB
=> tứ giác BECD là hình thang cân (vì có 2 đường chéo bằng nhau)
b) mk chưa biết làm
a)Gợi ý:
Đầu tiên bạn chứng minh BEDC là hình thang, sau đó chứng minh nó là hình thang cân.
Ta có:
góc B = (1800 - Â) : 2
rồi chứng minh tam giác EAD cân tại A, sau đó => góc AED = góc B = (1800 - Â) : 2
=> ED // BC (2 góc đồng vị)
=> BECD là hình thang (2 cạnh đối song song với nhau)
mà góc B = góc C (tam giác ABC cân tại A)
=> BECD là hình thang cân (2 góc kề 1 đáy bằng nhau)
bài b thì mk chưa học
đề sai -> lm j có 1 tam giác nào có 2 tia phân giác chung 1 đỉnh đâu ...
a) Xét tam giác ABC có:
\(DC=\dfrac{1}{2}AC\) (BD là đường trung tuyến)
\(EB=\dfrac{1}{2}AB\)(CE là đường trung tuyến)
Mà \(AB=AC\)(tam giác ABC là tam giác đều)
=> DC=EB
Xét ΔEBC và ΔDCB có:
DC=EB(cmt)
\(\widehat{EBC}=\widehat{DCB}=60^0\)
BC chung
=> ΔEBC=ΔDCB(c.g.c)
=> EC=DB(2 cạnh tương ứng)
Xét tam giác ABC có:
D là trung điểm AC(BD là đường trung tuyến)
E là trung điểm AB(CE là đường trung tuyến)
=> DE là đường trung bình ΔABC
=> DE//BC
=> Tứ giác BEDC là hình thang
Mà EC=BD(cmt)
=> Tứ giác BEDC là hình thang cân
b) Ta có: DE là đường trung bình của tam giác ABC
\(\Rightarrow DE=\dfrac{1}{2}BC=\dfrac{1}{2}.6=3\left(cm\right)\)(tính chất đường trung bình)
Ta có: \(BE=DC=\dfrac{1}{2}AB=\dfrac{1}{2}AC=\dfrac{1}{2}.6=3\left(cm\right)\)(do CE và BD là đường trung tuyên tam giác ABC)
\(P_{BEDC}=DE+EB+DC+BC=3+3+3+6=15\left(cm\right)\)
a) xét tam giác ABD và tam giác ACE, có:
AB = AC (gt)
^A chung
^B1 = ^C1 (= 1/2^B = 1/2^C)
nên tam giác ABD = tam giác ACE (g.c.g)
=> AD = AE
vì BEDC là hình thang cân nên DE // BC
=> ^D1 = ^B2 (sole trong)
lại có ^B2 = ^B1 nên ^B1 = ^D1
=> EBD cân
=> EB = ED
vậy BEDC là hình thang cân và có đáy nhỏ bằng cạnh bên
Lời giải có tại đây:
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-can-tai-a-cac-phan-giac-bd-cea-xac-dinh-tu-giac-bedcb-tinh-chu-vi-tu-giac-do-biet-bc-15cm-ed-9cm.1953042881633