Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
C1: Xét \(\Delta ABD\) và \(\Delta ACD\) có:
AD (chung)
\(\widehat{ADB}=\widehat{ADC}\) ( = 900)
AB = AC ( \(\Delta ABC\)cân tại A )
Do đó: \(\Delta ABD=\Delta ACD\) (cạnh huyền - cạnh góc vuông)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét tam giác DAB và tam giác DHB:
góc DAB= góc DHB =90o
DB chung
góc DBA= góc DBH
=> tam giác DAB = tam giác DHB (cạnh huyền _góc nhọn)
=> DA=DH (2 cạnh tương ứng)
b)
Ta có: DA = DH (cmt) (1)
và trong tam giác CHD :
DH là cạnh góc vuông
DC là cạnh huyền
=> DH < DC (2)
Từ (1) và (2) => AD < DH
c) Xét tam giác DAK và tam giác DHC:
góc DAK = góc DHC = 90o
DA = DH (cmt)
góc KDA = góc CDH (đối đỉnh)
=> tam giác DAK = tam giác DHC (cạnh góc vuông_ góc nhọn)
=> AK = HC (2 cạnh tương ứng)
Ta có: AB = HB (do tam giác DAB = tam giác DHB)
và AK = HC (cmt)
mà BK = AB + AK
BC = HB + HC
=> BK = BC
=> tam giác KBC cân
Cô nêu cách trình bày khác của câu c nhé. :)
Xét tam giác KBC, có KH, CK là các đường cao nên D là trực tâm của tam giác KBC. Từ đó suy ra BD là đường cao của tam giác KBC. Mà BD lại là đường phân giác nên tam giác KBC cân tại B.
![](https://rs.olm.vn/images/avt/0.png?1311)
xét 2 tam giác vuông BAD và CAD có :AD : cạnh chungAB = AC ( vì tam giác ABC cân tại A )=> tam giác BAD = tam giác CAD ( cạnh huyền - cạnh góc vuông)=> ^BAD = ^CAD ( 2 góc tương ứng )=> AD là tia phân giác của góc A
mik ko vẽ hình đc trên đây nên mik chỉ có lời giải
hình nhờ bạn tự vẽ giúp mik
mik cảm ơn
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có : HAC + HAB = 90
Mà ABC+ BCA = 90 ( do góc A = 90 , tong ba goc trong tam giac = 180)
Bây giờ chứng minh HAB= BCA
Ta có : HAB + HAC = 90
BCA + HAC = 90 (do góc H =90 )
=> HAB = BCA
=> HAC = ABC
TK
+ Ta có: AB= AC ; góc B= góc C ( tam giác ABC cân tại A)
+ Kẻ AD vuông góc với BC.
+ Xét tam giác ABD và tam giác ACD, có:
góc B= góc C (chứng minh trên) -> góc nhọn
góc ADB= góc ADC= 90 độ ( chứng mình trên) -> góc vuông
AB= AC (gt) -> cạnh huyền
=> tam giác ABD= tam giác ACD ( cạnh huyền + góc nhọn).
=> góc BAD= góc CAD ( 2 góc tương ứng) (1)
+ Mặt khác, ta lại có:
AD là tia nằm giữa AB và AC (2)
Từ (1) và (2) => AD là tia phân giác của góc A.
Toán mà có bài tham khảo luôn à :)