Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần lượt cm được DE,DF,EF là đường trung bình tam giác ABC
\(\Rightarrow DE=\dfrac{1}{2}BC=7\left(cm\right);DF=\dfrac{1}{2}AC=5\left(cm\right);EF=\dfrac{1}{2}AB=3\left(cm\right)\)
Hình thì bạn tự vẽ đi nha. Bn không làm đc nhưng cũng phải vẽ hình đc.
Trong ΔABC: DA = DB (GT); EA = EC (GT)
=> DE là đường trung bình
=> DE = 1/2 BC = 1/2 14 = 7 (cm)
Trong ΔABC: DA = DB (GT); FB = FC (GT)
=> DF là đường trung bình
=> DF = 1/2 AC = 1/2 10 = 5 (cm)
Trong ΔABC: EA = EC (GT); FC = FB (GT)
=> EF là đường trung bình
=> EF = 1/2 AB = 1/2 6 = 3 (cm)
Vậy DE = 7cm; DF = 5cm; EF = 3cm.
Xét \(\Delta ABC\)có: D là trung điểm của AB, E là trung điểm của AC
\(\Rightarrow\)DE là đường trung bình của \(\Delta ABC\)
\(\Rightarrow DE=\frac{1}{2}.BC=\frac{1}{2}.14=7\left(cm\right)\)
Tương tự ta có:
DF là đường trung bình của \(\Delta ABC\)\(\Rightarrow DF=\frac{1}{2}.AC=\frac{1}{2}.10=5\left(cm\right)\)
EF là đường trung bình của \(\Delta ABC\)\(\Rightarrow EF=\frac{1}{2}.AB=\frac{1}{2}.6=3\left(cm\right)\)
Vậy \(DE=7cm\), \(DF=5cm\), \(EF=3cm\)
Trong ΔABC: DA = DB (GT); EA = EC (GT)
=> DE là đường trung bình
=> DE = 1/2 BC = 1/2 14 = 7 (cm)
Trong ΔABC: DA = DB (GT); FB = FC (GT)
=> DF là đường trung bình
=> DF = 1/2 AC = 1/2 10 = 5 (cm)
Trong ΔABC: EA = EC (GT); FC = FB (GT)
=> EF là đường trung bình
=> EF = 1/2 AB = 1/2 6 = 3 (cm)
Vậy DE = 7cm; DF = 5cm; EF = 3cm.
Xét tứ giác BDEP có
DE//BP
BD//EP
Do đó: BDEP là hình bình hành
Suy ra: BD=EP(1)
Xét tứ giác ADPE có
AD//PE
AE//PD
Do đó: ADPE là hình bình hành
Suy ra: AD=PE(2)
Từ (1) và (2) suy ra AD=BD
hay D là trung điểm của AB
Xét ΔABC có
D là trung điểm của AB
DE//BC
Do đó: E là trung điểm của AC
Xét ΔABC có
E là trung điểm của AC
EP//AB
Do đó: P là trung điểm của BC
Xét tứ giác BDEP có
DE//BP
BD//EP
Do đó: BDEP là hình bình hành
Suy ra: BD=EP(1)
Xét tứ giác ADPE có
AD//PE
AE//PD
Do đó: ADPE là hình bình hành
Suy ra: AD=PE(2)
Từ (1) và (2) suy ra AD=BD
hay D là trung điểm của AB
Xét ΔABC có
D là trung điểm của AB
DE//BC
Do đó: E là trung điểm của AC
Xét ΔABC có
E là trung điểm của AC
EP//AB
Do đó: P là trung điểm của BC
D , E , F lần lượt là trung điểm của AB , AC , BC
=> DE , DF và EF sẽ lần lượt là các đường trung bình ứng với BC , AC , AB
\(\Rightarrow\left\{{}\begin{matrix}DE=\dfrac{1}{2}BC=\dfrac{1}{2}.14=7\left(cm\right)\\DF=\dfrac{1}{2}AC=\dfrac{1}{2}.10=5\left(cm\right)\\\text{EF}=\dfrac{1}{2}AB=\dfrac{1}{2}.6=3\left(cm\right)\end{matrix}\right.\)