Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gõ link này nha: http://olm.vn/hoi-dap/question/1078496.html
Gọi ... là P
Với \(a=b=c=\frac{3}{2}\Rightarrow P=\sqrt{5}\)
Ta sẽ chứng minh \(\sqrt{5}\) là GTNN của \(P\)
Áp dụng BĐT CAuchy-Schwarz ta có:
\(\sum_{cyc}\frac{\sqrt{a^2-1}}{a}=\sum_{cyc}\sqrt{1-\frac{1}{a^2}}\leq\sqrt{(1+1+1)\sum_{cyc}\left(1-\frac{1}{a^2}\right)}=\sqrt{3\sum_{cyc}\left(1-\frac{1}{a^2}\right)}\) (máy có vài ko công thức k xài được nên đành gõ = latex nên chữ hơi bé)
Tức là ta cần chứng minh \(3\sum_{cyc}\left(1-\frac{1}{a^2}\right)\leq5\)\(\Leftrightarrow \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq\frac{4}{3}.\)
Đặt \(\hept{\begin{cases}a+b+c=3u\\ab+bc+ca=3v^2\\abc=\text{ }w^6\end{cases}}\)\(\Leftrightarrow 9v^4-6uw^3\geq\frac{4}{3}w^6\)
Ta thừa biết \(a,b,c\) là 3 nghiệm dương của phương trình
\((x-a)(x-b)(x-c)=0\)
\(\Leftrightarrow x^3-3ux^2+3v^2x-w^3=0\)
\(\Leftrightarrow 3v^2x=-x^3+3ux^2+w^3\)
Vì vậy đường thẳng \(y=3v^2x\) và đồ thị \(y=-x^3+3ux^2+w^3\) có 3 điểm chung và khi đường thẳng \(y=3v^2x\) là một đường thẳng tiếp tuyến với đồ thị \(y=-x^3+3ux^2+w^3\) thì xảy ra trương hợp 2 biến bằng nhau (bình đẳng)
Khi đó \(b=a\) kết hợp với điều kiện suy ra\(c=\frac{27+36a}{32a^2-18}\)
Hay ta cần chứng minh \(a^4+2a^2\left(\frac{27+36a}{32a^2-18}\right)^2\geq\frac{4}{3}a^4\left(\frac{27+36a}{32a^2-18}\right)^2\)
\(\Leftrightarrow a^2(2a-3)^2(8a^2+12a+9)\geq0\) Luôn đúng
a: \(=2\sqrt{2}+30\sqrt{2}-3\sqrt{2}+6\sqrt{2}=26\sqrt{2}\)
b: \(=\dfrac{1}{2}\cdot4\sqrt{3}-2\cdot5\sqrt{3}+\sqrt{3}+\dfrac{5}{2}\sqrt{3}=-\dfrac{9}{2}\sqrt{3}\)
a.
\(B=\left(\frac{x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\\ =\left(\frac{x+3+\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\\ =\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}}\\ =\frac{\sqrt{x}+1}{\sqrt{x}+3}\)
b. Ta có :
\(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\\ =\sqrt{25+2\cdot5\cdot\sqrt{2}+2}-\sqrt{16+2\cdot4\cdot\sqrt{2}+2}\\ =\sqrt{\left(5+\sqrt{2}\right)^2}-\sqrt{\left(4+\sqrt{2}\right)^2}\\ =5+\sqrt{2}-4-\sqrt{2}=1\)
\(B=\frac{\sqrt{x}+1}{\sqrt{x}+3}=\frac{1+1}{1+3}=\frac{2}{4}=\frac{1}{2}\)
c. Giả sử B>\(\frac{1}{3}\), ta có
\(B=\frac{\sqrt{x}+1}{\sqrt{x}+3}>\frac{1}{3}\\ \Leftrightarrow\frac{\sqrt{x}+1}{\sqrt{x}+3}-\frac{1}{3}>0\\ \Leftrightarrow\\\frac{3\left(\sqrt{x}+1\right)-\left(\sqrt{x}+3\right)}{3\left(\sqrt{x}+3\right)}>0\\ \Leftrightarrow\frac{2\sqrt{x}}{3\left(\sqrt{x}+3\right)}>0\left(luondungvoix>0\right)\)
Vậy.........