K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2021

áp dụng bđt Bunyakovsky dạng phân thức ta có ngay :

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{\left(1+1+1\right)^2}{a+b+b+c+c+a}=\frac{9}{2\left(a+b+c\right)}=\frac{9}{2}\)

đẳng thức xảy ra <=> a = b = c = 1/3

vậy ta có đpcm

20 tháng 3 2020

BĐT phụ:\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\left(x-y\right)^2\ge0\left(true\right)\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{4}{a+b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) ( đpcm )

Vậy.......

17 tháng 10 2016

Từ giả thiết ta có \(1+c^2=ab+bc+ac+c^2=\left(a+c\right)\left(b+c\right)\) ; \(1+a^2=ab+bc+ac+a^2=\left(a+b\right)\left(a+c\right)\)

\(1+b^2=ab+bc+ac+b^2=\left(b+a\right)\left(b+c\right)\)

Suy ra \(\frac{a+b}{1+c^2}+\frac{b+c}{1+a^2}+\frac{c+a}{1+b^2}=\frac{a+b}{\left(c+a\right)\left(c+b\right)}+\frac{b+c}{\left(a+b\right)\left(a+c\right)}+\frac{c+a}{\left(b+a\right)\left(b+c\right)}\)

\(=\frac{\left(a+b\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{\left(b+c\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{\left(c+a\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Theo BĐT Cauchy , ta có : \(\frac{\left(a+b\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{27\left(a+b\right)^2}{\left(a+b+b+c+c+a\right)^3}=\frac{27\left(a+b\right)^2}{8\left(a+b+c\right)^3}\)

Tương tự : \(\frac{\left(b+c\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{27\left(b+c\right)^2}{8\left(a+b+c\right)^3}\) ; \(\frac{\left(c+a\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{27\left(c+a\right)^2}{8\left(a+b+c\right)^3}\)

\(\Rightarrow\frac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{9}{8\left(a+b+c\right)^3}.3\left[\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\right]\)

\(\ge\frac{9}{8\left(a+b+c\right)^3}.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]^2\) (Áp dụng BĐT Bunhiacopxki)

\(=\frac{9.4\left(a+b+c\right)^2}{8\left(a+b+c\right)^3}=\frac{9}{2\left(a+b+c\right)}\) (đpcm)

22 tháng 3 2019

Áp dụng bất đẳng thức Cô-si ta có:

\(\dfrac{a^2}{b^3}+\dfrac{1}{a}+\dfrac{1}{a}\ge\sqrt[3]{\dfrac{a^2}{b^3}.\dfrac{1}{a}.\dfrac{1}{a}}=\dfrac{3}{b}\)

\(\dfrac{c^2}{a^3}+\dfrac{1}{c}+\dfrac{1}{c}\ge\sqrt[3]{\dfrac{c^2}{a^3}.\dfrac{1}{c}.\dfrac{1}{c}}=\dfrac{3}{a}\)

\(\dfrac{c^2}{a^3}+\dfrac{1}{c}+\dfrac{1}{c}\ge\sqrt[3]{\dfrac{c^2}{a^3}.\dfrac{1}{c}.\dfrac{1}{c}}=\dfrac{3}{a}\)

Cộng theo vế ta được:

\(\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{a^2}{a^3}+\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\ge3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Leftrightarrow\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{c^2}{a^3}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

9 tháng 8 2019

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

9 tháng 8 2019

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

17 tháng 8 2017

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ac}{abc}\ge\frac{9}{a+b+c}\)

\(\Leftrightarrow\left(ab+ac+bc\right)\left(a+b+c\right)-9abc\ge0\)

\(\Leftrightarrow a^2b+a^2c+abc+abc+ab^2+b^2c+abc+ac^2+bc^2-9abc\ge0\)

\(\Leftrightarrow a^2b+a^2c+ab^2+b^2c+ac^2+bc^2-6abc\ge0\)

\(\Leftrightarrow\left(a^2b-2abc+bc^2\right)+\left(a^2c-2abc+b^2c\right)+\left(ab^2-2abc+ac^2\right)\ge0\)

\(\Leftrightarrow b\left(a-b\right)^2+c\left(a-c\right)^2+a\left(b-c\right)^2\ge0\)(luôn đúng \(\forall a;b;c>0\))

Vật bđt đã đc chứng minh

17 tháng 8 2017

Cho a,b,c>0 thì dễ thôi :v

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}\)

Khi a=b=c

8 tháng 5 2018

\(\frac{a^2}{b^3}+\frac{b^2}{c^3}+\frac{c^2}{a^3}=\frac{1}{b}+\frac{1}{c}+\frac{1}{a}\)

=> \(\frac{a^2}{b^3}+\frac{b^2}{c^3}+\frac{c^2}{a^3}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

20 tháng 5 2018

\(\frac{a^2}{b^3}+\frac{1}{a}+\frac{1}{a}\ge3\cdot\frac{1}{b}\)