\(M=abc\left(a+b\right)\left(b+c\right)\le...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2018

Áp dụng BĐT AM-GM với a;b;c > 0: \(abc\le\frac{\left(a+b+c\right)^3}{27}=\frac{1}{27}\)(Vì a+b+c=1)

Với a+b; b+c; c+a > 0 (Do a,b,c > 0): \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{8\left(a+b+c\right)^3}{27}=\frac{8}{27}\)

\(\Rightarrow M=abc\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{1}{27}.\frac{8}{27}=\frac{8}{729}\)

Vậy Max \(M=\frac{8}{729}\). Đẳng thức xảy ra <=> \(\hept{\begin{cases}a=b=c\\a+b=b+c=c+a\\a+b+c=1\end{cases}}\Leftrightarrow a=b=c=\frac{1}{3}.\)

30 tháng 8 2016

cosi đi 

30 tháng 8 2016

trong quyển nâng cao phát triển toán 9 đó

rất bổ ích đấy mua về mà đọc 

15 tháng 4 2020

chuyển mỗi biểu thức trong cân về cùng bậc 2 ta có:

\(a+\frac{\left(b-c\right)^2}{4}=a\left(a+b+c\right)+\frac{\left(b-c\right)^2}{4}=a^2+a\left(b+c\right)+\frac{\left(b+c\right)^2-4ab}{4}\)

\(=\left(a+\frac{b+c}{2}\right)^2-bc\le\left(a+\frac{b+c}{2}\right)^2\)

\(\Rightarrow\sqrt{a+\frac{\left(b-c\right)^2}{2}}\le a+\frac{b+c}{2}\)

tương tự ta có: \(\hept{\begin{cases}\sqrt{b+\frac{\left(c-a\right)^2}{4}}\le b+\frac{c+a}{2}\\\sqrt{c+\frac{\left(a-b\right)^2}{4}}\le c+\frac{a+b}{2}\end{cases}}\)

cộng theo vế của bđt trên ta được

\(P=\sqrt{a+\frac{\left(b-c\right)^2}{4}}+\sqrt{b+\frac{\left(c-a\right)^2}{4}}+\sqrt{c+\frac{\left(a-b\right)^2}{4}}\le2\left(a+b+c\right)=2\)

Vậy GTLN của P=2 đạt được khi a=b=0;c=1 và các hoán vị

AH
Akai Haruma
Giáo viên
10 tháng 2 2018

Lời giải:

Từ ĐKĐB suy ra tồn tại $x,y,z>0$ sao cho:

\((a,b,c)=\left(\frac{x^2}{(x+y)(x+z)}; \frac{y^2}{(y+z)(y+x)}; \frac{z^2}{(z+x)(z+y)}\right)\)

(lưu ý cách đặt ẩn phụ như thế này rất hữu ích trong các bài BĐT có điều kiện như trên)

Khi đó:

\(a(1-b)(1-c)=\frac{x^2}{(x+y)(x+z)}\left(1-\frac{y^2}{(y+z)(y+x)}\right)\left(1-\frac{z^2}{(z+x)(z+y)}\right)\)

\(=\frac{x^2}{(x+y)(x+z)}.\frac{xy+yz+xz}{(y+z)(y+x)}.\frac{xy+yz+xz}{(z+x)(z+y)}=\left(\frac{x(xy+yz+xz)}{(x+y)(y+z)(z+x)}\right)^2\)

\(\Rightarrow \sqrt{a(1-b)(1-c)}=\frac{x(xy+yz+xz)}{(x+y)(y+z)(z+x)}\)

Tương tự như vậy với các phân thức tương ứng còn lại.

\(\sqrt{abc}=\sqrt{\frac{x^2.y^2z^2}{((x+y)(y+z)(z+x))^2}}=\frac{xyz}{(x+y)(y+z)(z+x)}\)

Do đó:

\(A=\frac{x(xy+yz+xz)}{(x+y)(y+z)(z+x)}+\frac{y(xy+yz+xz)}{(x+y)(y+z)(z+x)}+\frac{z(xy+yz+xz)}{(x+y)(y+z)(z+x)}-\frac{xyz}{(x+y)(y+z)(z+x)}+2017\)

\(A=\frac{(x+y+z)(xy+yz+xz)-xyz}{(x+y)(y+z)(z+x)}+2017=\frac{(x+y)(y+z)(z+x)}{(x+y)(y+z)(z+x)}+2017=1+2017=2018\)

15 tháng 2 2018

Cho e hỏi tí ạ ! Ta có thể dùng cách đặt ẩn này cho những trường hợp nào nữa ? Căn cứ để đặt ẩn ạ !

19 tháng 5 2017

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

9 tháng 8 2020

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

27 tháng 5 2020

Bài 2:b) \(9=\left(\frac{1}{a^3}+1+1\right)+\left(\frac{1}{b^3}+1+1\right)+\left(\frac{1}{c^3}+1+1\right)\)

\(\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\therefore\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\)

Ta sẽ chứng minh \(P\le\frac{1}{48}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

Ai có cách hay?

27 tháng 5 2020

1/Đặt a=1/x,b=1/y,c=1/z ->x+y+z=1.

2a) \(VT=\frac{\left(\frac{1}{a^3}+\frac{1}{b^3}\right)\left(\frac{1}{a}+\frac{1}{b}\right)}{\frac{1}{a}+\frac{1}{b}}\ge\frac{\left(\frac{1}{a^2}+\frac{1}{b^2}\right)^2}{\frac{1}{a}+\frac{1}{b}}\)

\(=\frac{\left[\frac{\left(a^2+b^2\right)^2}{a^4b^4}\right]}{\frac{a+b}{ab}}=\frac{\left(a^2+b^2\right)^2}{a^3b^3\left(a+b\right)}\ge\frac{\left(a+b\right)^3}{4\left(ab\right)^3}\)

\(\ge\frac{\left(a+b\right)^3}{4\left[\frac{\left(a+b\right)^2}{4}\right]^3}=\frac{16}{\left(a+b\right)^3}\)

15 tháng 6 2018

mình chịu

15 tháng 6 2018

đây là toán lớp 9 á?

23 tháng 5 2017

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)

Tượng tự ta có \(\hept{\begin{cases}\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+a}{8}\ge\frac{3b}{4}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3c}{4}\end{cases}}\)

\(\Rightarrow VT+\frac{3}{4}+\frac{a+b+c}{4}\ge\frac{3\left(a+b+c\right)}{4}\)

\(\Rightarrow VT\ge\frac{a+b+c}{2}-\frac{3}{4}\)(1) 

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow a+b+c\ge3\sqrt[3]{abc}=3\)

\(\Rightarrow\frac{a+b+c}{2}-\frac{3}{4}\ge\frac{3}{4}\)(2) 

Từ (1) và (2) 

\(\Rightarrow VT\ge\frac{3}{4}\)( đpcm ) 

Dấu " = " xảy ra khi \(a=b=c=1\)

6 tháng 6 2019

a) \(A=\left(\sqrt{a}+\sqrt{b}\right)^2\le\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2=2a+2b\le2\)

Vậy GTLN của A là 2 \(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}\\a+b=1\end{cases}\Leftrightarrow a=b=\frac{1}{2}}\)

b) Ta có : \(\left(\sqrt{a}+\sqrt{b}\right)^4\le\left(\sqrt{a}+\sqrt{b}\right)^4+\left(\sqrt{a}-\sqrt{b}\right)^4=2\left(a^2+b^2+6ab\right)\)

Tương tự : \(\left(\sqrt{a}+\sqrt{c}\right)^4\le2\left(a^2+c^2+6ac\right)\)

\(\left(\sqrt{a}+\sqrt{d}\right)^4\le2\left(a^2+d^2+6ad\right)\)

\(\left(\sqrt{b}+\sqrt{c}\right)^4\le2\left(b^2+c^2+6bc\right)\)

\(\left(\sqrt{b}+\sqrt{d}\right)^4\le2\left(b^2+d^2+6bd\right)\)

\(\left(\sqrt{c}+\sqrt{d}\right)^4\le2\left(c^2+d^2+6cd\right)\)

Cộng các vế lại, ta được :

\(B\le6\left(a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bd+2cd+2bc\right)=6\left(a+b+c+d\right)^2\)

\(\Rightarrow B\le6\)

Vậy GTLN của B là 6 \(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=\sqrt{b}=\sqrt{c}=\sqrt{d}\\a+b+c+d=1\end{cases}}\Leftrightarrow a=b=c=d=\frac{1}{4}\)