K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2018

Bài này cx dễ mà!!!

Từ phương trình trên ta có phương trình tương đương

\(x-b-c/a+x-c-a/b+x-a-b/c-3=0\)

<=>\(x-b-c/a-1+x-c-a/b-1+x-a-b/c-1=0\)

Quy đơng lên ta được 

<=>\(x-a-b-c/a+x-a-b-c/b+x-a-b-c/c=0\)

Ta thấy từng hạng tử của vế trái phương trình đều có tử là x-a-b-c nên ta đặt nhân tử chung được phương trình tương đương

\((x-a-b-c)*(1/a+1/b+1/c)=0\)

=>\(x-a-b-c=0 \)

=>x=a+b+c

Vì a,b,c là các hằng số nên có thể xảy ra một số trường hợp (1/a+1/b+1/c)=0

nhưng vì đây là giải phương trình nên ta chỉ tìm giá trị của x, trong trường hợp này thì giá trị của x phụ thuộc và giá trị của a,b,c

Vậy S={x=a+b+c\a,b,c khác 0)

27 tháng 1 2020

ĐKXĐ : a;b;c>0;a≠−(b+c);b≠−(c+a);c≠−(a+b)a;b;c≠0;a≠−(b+c);b≠−(c+a);c≠−(a+b)

a+b−xc+b+c−xa+c+a−xb+4xa+b+c=1a+b−xc+b+c−xa+c+a−xb+4xa+b+c=1

⇔(a+b−xc+1)+(b+c−xa+1)+(c+a−xb+1)+4xa+b+c−3−1=0⇔(a+b−xc+1)+(b+c−xa+1)+(c+a−xb+1)+4xa+b+c−3−1=0

⇔a+b+c−xc+a+b+c−xa+a+b+c−xb+4xa+b+c−4=0⇔a+b+c−xc+a+b+c−xa+a+b+c−xb+4xa+b+c−4=0

⇔(a+b+c−x)(1a+1b+1c)+4(x−a−b−c)a+b+c=0⇔(a+b+c−x)(1a+1b+1c)+4(x−a−b−c)a+b+c=0

⇔(a+b+c−x)(1a+1b+1c−4a+b+c)=0⇔(a+b+c−x)(1a+1b+1c−4a+b+c)=0

Do 1a+1b+1c−4a+b+c≠01a+1b+1c−4a+b+c≠0

⇒a+b+c−x=0⇔x=a+b+c⇒a+b+c−x=0⇔x=a+b+c

Vậy ...

Ta có pt : \(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}+\frac{4x}{a+b+c}=1\) (1)

( ĐK: Do bài cho a,b,c > 0 rồi nên không cần nhé bạn )

Pt (1) \(\Leftrightarrow\left(\frac{a+b-x}{c}+1\right)+\left(\frac{b+c-x}{a}+1\right)+\left(\frac{c+a-x}{b}+1\right)+\left(\frac{4x}{a+b+c}-4\right)=0\)

\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}-\frac{4\left(a+b+c-x\right)}{a+b+c}=0\)

\(\Leftrightarrow\left(a+b+c-x\right)\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b+c}\right)=0\)

Do : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}\ne0\forall a,b,c>0\)

Nên : \(a+b+c-x=0\)

\(\Leftrightarrow a+b+c=x\)

Vậy : pt (1) có tập nghiệm \(S=\left\{a+b+c\right\}\)

15 tháng 1 2020

\(ĐKXĐ:a,b,c\ne0\)

\(\frac{x-a}{bc}+\frac{x-b}{ca}+\frac{x-c}{ab}=\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)

\(\Leftrightarrow\frac{xa-a^2}{abc}+\frac{xb-b^2}{abc}+\frac{xc-c^2}{abc}=\frac{2bc}{abc}+\frac{2ac}{abc}+\frac{2ab}{abc}\)

\(\Leftrightarrow\frac{xa-a^2+xb-b^2+xc-c^2}{abc}=\frac{2bc+2ac+2ab}{abc}\)

\(\Leftrightarrow xa-a^2+xb-b^2+xc-c^2=2bc+2ac+2ab\)

\(\Leftrightarrow xa+xb+xc=2bc+2ac+2ab+a^2+b^2+c^2\)

\(\Leftrightarrow x\left(a+b+c\right)=\left(a+b+c\right)^2\)

\(\Leftrightarrow x=a+b+c\)

Vậy x = a + b + c

15 tháng 1 2020

\(ĐKXĐ:a,b,c\ne0\)

\(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}+\frac{4x}{a+b+c}=1\)

\(\Leftrightarrow\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}=1-\frac{4x}{a+b+c}\)

\(\Leftrightarrow1+\frac{a+b-x}{c}+1+\frac{b+c-x}{a}+1+\frac{c+a-x}{b}=4\)

\(-\frac{4x}{a+b+c}\)

\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}=\)

\(\frac{4\left(a+b+c\right)}{a+b+c}-\frac{4x}{a+b+c}\)

\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}=\)

\(\frac{4\left(a+b+c-x\right)}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c-x\right)\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b+c}\right)=0\)

\(\Rightarrow\left(a+b+c-x\right)=0\)hoặc \(\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b+c}\right)=0\)

+) Nếu \(\Rightarrow\left(a+b+c-x\right)=0\)thì x = a + b + c

+) Nếu \(\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b+c}\right)=0\)thì x thỏa mãn với mọi số

1: 

a: \(B=\dfrac{3x^2+3-x^2+2x-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x-1}{2x^2-5x+5}\)

\(=\dfrac{x^2+x+1}{x^2+x+1}\cdot\dfrac{1}{2x^2-5x+5}=\dfrac{1}{2x^2-5x+5}\)

b: \(2x^2-5x+5=2\left(x^2-\dfrac{5}{2}x+\dfrac{5}{2}\right)\)

\(=2\left(x^2-2\cdot x\cdot\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{15}{16}\right)\)

\(=2\left(x-\dfrac{5}{4}\right)^2+\dfrac{15}{8}\ge\dfrac{15}{8}\forall x\)

=>B<=8/15

Dấu '=' xảy ra khi x=5/4

 

\(c,\frac{x-a-b}{c}-1+\frac{x-b-c}{a}-1+\frac{x-a-c}{b}-1=0.\)

\(\frac{x-a-b-c}{c}+\frac{x-a-b-c}{a}+\frac{x-a-b-c}{b}=0\)

\(\left(x-a-b-c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\)

=>\(\orbr{\begin{cases}a+b+c=x\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\end{cases}}\)

Vậy.......

11 tháng 4 2017

cong lai nhu phep cong tuy hoi do nhung van ra

4 tháng 2 2017

\(\Leftrightarrow\left(\frac{x-b-c}{a}-1\right)+\left(\frac{x-c-a}{b}-1\right)+\left(\frac{x-a-b}{c}-1\right)=0\\ \)

\(\Leftrightarrow\left(x-p\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\)

=> x=p=(a+b+c)

4 tháng 2 2017

sao lại là p

8 tháng 2 2018

Quy đồng rồi phân tích nhân tử bình thường đi

\(\left(x-1\right)\left(x-ab-bc-ca\right)\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\)