K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2019

a) Vì x;y;z > 0 nên áp dụng bất đẳng thức Bunhiakovsky : \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) , ta được :

\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2xz}\)

\(\Leftrightarrow\)\(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)

Vậy \(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\ge1\left(ĐPCM\right)\)

b) Ta chứng minh bất đẳng thức phụ :\(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2-3\left(ab+bc+ac\right)\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac-3ab-3ac-3bc\ge0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-ab-ac\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng )

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+ab+ac\right)\)

Vì a,b,c > 0 nên áp dụng bất đẳng thức Bunhiakovsky : \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) , ta được :

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\)

\(\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\ge\frac{3\left(ab+bc+ac\right)}{2\left(ab+bc+ac\right)}=\frac{3}{2}\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)

Vậy \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\left(ĐPCM\right)\)

6 tháng 8 2020

Ta có: \(\frac{x^2}{1+2yz}+\frac{y^2}{1+2zx}+\frac{z^2}{1+2xy}\)

\(\ge\frac{\left(x+y+z\right)^2}{3+2\left(xy+yz+zx\right)}\ge\frac{\left(x+y+z\right)^2}{3+2\left(x^2+y^2+z^2\right)}\)

\(=\frac{\left(x+y+z\right)^2}{3+2}=\frac{\left(x+y+z\right)^2}{5}\)

Mà \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=3\)

Nên thay vào ngược dấu

=> ch bt lm

6 tháng 8 2020

Nói chung khá đơn giản. Em chứng minh bất đẳng thức sau đây là được.

\(\frac{x^2}{1+2yz}=\frac{x^2}{x^2+\left(y^2+z^2+2yz\right)}=\frac{x^2}{x^2+\left(y+z\right)^2}\ge\frac{1}{25}\cdot\frac{17x^2-y^2-z^2}{x^2+y^2+z^2}\)

Có thể chứng minnh nó bằng cách: \(f\left(x,y,z\right)=\frac{x^2}{x^2+\left(y+z\right)^2}-\frac{1}{25}\cdot\frac{17x^2-y^2-z^2}{x^2+y^2+z^2}\)

Ta chứng minhL \(f\left(x,y,z\right)\ge f\left(x,\frac{y+z}{2},\frac{y+z}{2}\right)\ge0\) (quy đồng phát là ra nhân tử (y-z)^2 nên hiển nhiên:v)

Tương tự cộng lại. Xong.

Cách Cauchy-SChwarz:

Chứng minh theo trình tự: \(\Sigma\frac{x^2}{x^2+\left(y+z\right)^2}\ge\frac{\left(x^2+y^2+z^2\right)^2}{\Sigma x^2\left[x^2+\left(y+z\right)^2\right]}\ge\frac{3}{5}\)

BĐT Bunhiacopxky em chưa học cô ạ

Cô cong cách nào không ạ

AH
Akai Haruma
Giáo viên
1 tháng 6 2020

Nguyễn Thị Nguyệt Ánh:

Vậy thì bạn có thể chứng minh $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$ thông qua BĐT Cô-si:

Áp dụng BĐT Cô-si:

$x+y+z\geq 3\sqrt[3]{xyz}$

$xy+yz+xz\geq 3\sqrt[3]{x^2y^2z^2}$

Nhân theo vế:

$(x+y+z)(xy+yz+xz)\geq 9xyz$

$\Rightarrow \frac{xy+yz+xz}{xyz}\geq \frac{9}{x+y+z}$
hay $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$

26 tháng 3 2018

Đầu tiên ta sẽ chứng minh \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\left(1\right)\)

\(\Leftrightarrow x^2b\left(a+b\right)+y^2a\left(a+b\right)\ge ab\left(x+y\right)^2\)

\(\Leftrightarrow\left(bx-ay\right)^2\ge0\left(LĐ\right)\)

Dấu "=" xảy ra khi \(\frac{x}{a}=\frac{y}{b}\)

Vậy BĐT (1) đã được chứng minh

Với 6 số x,y,z,a,b,c >0 ta sẽ áp dụng BĐT (1) hai lần:

\(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y\right)^2}{a+b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\left(đpcm\right)\)

22 tháng 7 2020

Bài làm:

Áp dụng Cauchy Schwars ta có:

\(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)

Dấu "=" xảy ra khi: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

29 tháng 1 2020

a) Ta có:

\(\frac{2a+b}{a+b}+\frac{2b+c}{b+c}+\frac{2c+d}{c+d}+\frac{2d+a}{d+a}=6\)

\(\Leftrightarrow\left[\left(\frac{2a+b}{a+b}-1\right)+\left(\frac{2b+c}{b+c}-1\right)-1\right]+\left[\left(\frac{2c+d}{c+d}-1\right)+\left(\frac{2d+a}{d+a}-1\right)-1\right]=0\)

\(\Leftrightarrow\left(\frac{a}{a+b}+\frac{b}{b+c}-1\right)+\left(\frac{c}{c+d}+\frac{d}{d+a}-1\right)=0\)

\(\Leftrightarrow\left(\frac{a.\left(b+c\right)}{\left(a+b\right).\left(b+c\right)}+\frac{b.\left(a+b\right)}{\left(a+b\right).\left(b+c\right)}-\frac{\left(a+b\right).\left(b+c\right)}{\left(a+b\right).\left(b+c\right)}\right)+\left(\frac{c.\left(d+a\right)}{\left(c+d\right).\left(d+a\right)}+\frac{d.\left(c+d\right)}{\left(c+d\right).\left(d+a\right)}-\frac{\left(c+d\right).\left(d+a\right)}{\left(c+d\right).\left(d+a\right)}\right)=0\)

\(\Leftrightarrow\left(\frac{ab+ac}{\left(a+b\right).\left(b+c\right)}+\frac{ab+b^2}{\left(a+b\right).\left(b+c\right)}-\frac{ab+ac+b^2+bc}{\left(a+b\right).\left(b+c\right)}\right)+\left(\frac{cd+ac}{\left(c+d\right).\left(d+a\right)}+\frac{cd+d^2}{\left(c+d\right).\left(d+a\right)}-\frac{cd+ac+d^2+ad}{\left(c+d\right).\left(d+a\right)}\right)=0\)

\(\Leftrightarrow\left(\frac{ab+ac+ab+b^2-ab-ac-b^2-bc}{\left(a+b\right).\left(b+c\right)}\right)+\left(\frac{cd+ac+cd+d^2-cd-ac-d^2-ad}{\left(c+d\right).\left(d+a\right)}\right)=0\)

\(\Leftrightarrow\frac{ab-bc}{\left(a+b\right).\left(b+c\right)}+\frac{cd-ad}{\left(c+d\right).\left(d+a\right)}=0\)

\(\Leftrightarrow\frac{ab-bc}{\left(a+b\right).\left(b+c\right)}=-\frac{cd-ad}{\left(c+d\right).\left(d+a\right)}\)

\(\Leftrightarrow\frac{ab-bc}{\left(a+b\right).\left(b+c\right)}=\frac{ad-cd}{\left(c+d\right).\left(d+a\right)}\)

\(\Leftrightarrow\frac{b.\left(a-c\right)}{\left(a+b\right).\left(b+c\right)}=\frac{d.\left(a-c\right)}{\left(c+d\right).\left(d+a\right)}\)

\(\Leftrightarrow\frac{b}{\left(a+b\right).\left(b+c\right)}=\frac{d}{\left(c+d\right).\left(d+a\right)}\) (vì \(a;b;c;d\) là số nguyên dương).

\(\Leftrightarrow b\left(c+d\right).\left(d+a\right)=d\left(a+b\right).\left(b+c\right)\)

\(\Leftrightarrow\left(bc+bd\right).\left(d+a\right)=\left(ad+bd\right).\left(b+c\right)\)

\(\Leftrightarrow bcd+abc+bd^2+abd=abd+acd+b^2d+bcd\)

\(\Leftrightarrow bd^2+abc=b^2d+acd\)

\(\Leftrightarrow bd^2-b^2d=acd-abc\)

\(\Leftrightarrow bd.\left(d-b\right)=ac.\left(d-b\right)\)

\(\Leftrightarrow bd.\left(d-b\right)-ac.\left(d-b\right)=0\)

\(\Leftrightarrow\left(d-b\right).\left(bd-ac\right)=0\)

\(a;b;c;d\) là số nguyên dương.

\(\Rightarrow d-b>0\)

\(\Rightarrow d-b\ne0.\)

\(\Leftrightarrow bd-ac=0\)

\(\Leftrightarrow bd=ac.\)

Lại có:

\(A=abcd\)

\(\Rightarrow A=ac.bd\)

\(\Rightarrow A=ac.ac\)

\(\Rightarrow A=\left(ac\right)^2.\)

\(\Rightarrow A=abcd\) là số chính phương (đpcm).

Chúc bạn học tốt!

20 tháng 7 2017

1.a>0.√a

2.c/mb/z+x/y=a/b6

=x/y=y/x

4.xxy/2 2

5.a/b+ab=ab2

17 tháng 5 2018

Đặt \(x^2+2y^2=m;y^2+2z^2=n;z^2+2x^2=p\)

Ta có :\(9\left(x^2+y^2+z^2\right)\left(\frac{a^3}{x^2+2y^2}+\frac{b^3}{y^2+2z^2}+\frac{c^3}{z^2+2x^2}\right)\)

\(=\left(1+1+1\right)\left(m+n+p\right)\left(\frac{a^3}{m}+\frac{b^3}{n}+\frac{c^3}{p}\right)\ge\left(a+b+c\right)^3=1\)

do đó \(9\left(x^2+y^2+z^2\right)\left(\frac{a^3}{x^2+2y^2}+\frac{b^3}{y^2+2z^2}+\frac{c^3}{z^2+2x^2}\right)\ge1\)

\(\Rightarrow\left(x^2+y^2+z^2\right)\left(\frac{a^3}{x^2+2y^2}+\frac{b^3}{y^2+2z^2}+\frac{c^3}{z^2+2x^2}\right)\ge\frac{1}{9}\)(đpcm)

Xong rồi đấy,bạn k cho mình nhé

9 tháng 7 2020

áp dụng bđt Cô -si: x+y+z\(\ge3\sqrt[3]{xyz}\) với 3 số x,y,z không âm

ta có: \(\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\ge3\sqrt[3]{\frac{1}{x\left(x+1\right)}.\frac{x}{2}.\frac{x+1}{4}}=3\sqrt[3]{\frac{1}{8}}=\frac{3}{2}\)(1)

tương tự: \(\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{4}\ge\frac{3}{2}\) (2)

\(\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge\frac{3}{2}\)(3)

cộng (1), (2) và (3) ta có: \(\frac{1}{x\left(x+1\right)}+\frac{1}{y\left(y+1\right)}+\frac{1}{z\left(z+1\right)}+\frac{x+y+z}{2}+\frac{x+y+z+3}{4}\ge3.\frac{3}{2}\)

\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{9}{2}-\frac{3}{2}-\frac{6}{4}=\frac{3}{2}\)

dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)


9 tháng 7 2018

Áp dụng BĐT Cosi dạng engel cho 3 số dương ta có:

\(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)

Dấu "=" xảy ra khi \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

9 tháng 7 2018

Ta thấy \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\)đều là số dương

Vì thế nên ta sẽ áp dụng bđt cô-si dạng engel:

\(\frac{x^2+y^2+z^2}{a+b+c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)

Vậy đẳng thức chỉ xảy ra khi \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)