\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2019

\(VT=a-\frac{ab^2}{b^2+1}+b-\frac{bc^2}{c^2+1}+c-\frac{ca^2}{a^2+1}\)

\(=3-\left(\frac{ab^2}{b^2+1}+\frac{bc^2}{c^2+1}+\frac{ca^2}{a^2+1}\right)\)

Áp dụng BCS:

\(\frac{ab^2}{b^2+1}\le\frac{ab^2}{2b}=\frac{ab}{2}\)

\(\frac{bc^2}{c^2+1}\le\frac{bc^2}{2c}=\frac{bc}{2}\)

\(\frac{ca^2}{a^2+1}\le\frac{ca^2}{2a}=\frac{ca}{2}\)

\(\Rightarrow3-\left(\frac{ab^2}{b^2+1}+\frac{bc^2}{c^2+1}+\frac{ca^2}{a^2+1}\right)\ge3-\frac{ab+bc+ca}{2}\)

Ta có BĐT phụ:

\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow ab+bc+ca\le3\)(vì a+b+c=3)

\(\Rightarrow\frac{ab+bc+ca}{2}\le\frac{3}{2}\)

\(\Rightarrow3-\frac{ab+bc+ca}{2}\ge\frac{3}{2}\)

Vậy \(VT=a-\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)

(Dấu "="\(\Leftrightarrow a=b=c=1\))

27 tháng 12 2019

https://olm.vn/hoi-dap/detail/227071860547.html

11 tháng 5 2017

Bài 2 :

Ta có :

\(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}=\frac{a^2b-ab^2+a^2c-ac^2}{\left(b+c\right)\left(b^2+c^2\right)}=\frac{ab\left(a-b\right)+ac\left(a-c\right)}{\left(b+c\right)\left(b^2+c^2\right)}\)( 1 )

\(\frac{b^2}{c^2+a^2}-\frac{b}{c+a}=\frac{bc\left(b-c\right)+ab\left(b-a\right)}{\left(c+a\right)\left(c^2+a^2\right)}\)( 2 )

\(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}=\frac{ac\left(c-a\right)+bc\left(c-c\right)}{\left(a+b\right)\left(a^2+b^2\right)}\)  ( 3 )

Cộng ( 1 ) , ( 2 ) , ( 3 ) ta được : 

\(\left(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\right)-\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

\(=ab\left(a-b\right)\left[\frac{1}{\left(b+c\right)\left(b^2+c^2\right)}-\frac{1}{\left(a+c\right)\left(a^2+c^2\right)}\right]\)

\(+ac\left(a-c\right)\left[\frac{1}{\left(b+c\right)\left(b^2+c^2\right)}-\frac{1}{\left(a+b\right)\left(a^2+b62\right)}\right]\)

\(+bc\left(b-c\right)\left[\frac{1}{\left(a+c\right)\left(a^2+c^2\right)}-\frac{1}{\left(a+b\right)\left(a^2+b^2\right)}\right]\)

Theo đề bài thì  \(a,b,c>0\)( các biểu thức trong các dấu ngoặc đều không âm ) \(\Leftrightarrow dpcm\)

Thấy đúng thì tk nka !111

12 tháng 5 2017

Bài 3:

ta có :    \(a^4+b^4\ge2a^2b^2\)

Cộng    \(a^4+b^4\)  vào 2 vế ta được:  

\(2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\)\(\Leftrightarrow a^4+b^4\ge\frac{1}{2}\left(a^2+b^2\right)^2\)

Ta cũng có : \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\)

                  \(\Leftrightarrow a^4+b^4\ge\frac{1}{8}\left(a+b\right)^4\)

mà theo bài thì   \(a+b>1\)\(\Rightarrow dpcm\)

TK MK NKA !!!

31 tháng 3 2019

1) Theo bđt AM-GM,ta có: \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)

Suy ra \(\frac{a^2}{b+c}\ge a-\frac{b+c}{4}\)

Thiết lập hai BĐT còn lại tương tự và cộng theo vế ta có đpcm

31 tháng 3 2019

4/\(\frac{a^2}{b}+b\ge2\sqrt{\frac{a^2}{b}.b}=2a\Rightarrow\frac{a^2}{b}\ge2a-b\)

Thiết lập 2 BĐT còn lai5n tương tự,cộng theo vế ta có đpcm.

27 tháng 5 2017

Nhân cả 2 vế với a+b+c 

Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0

dễ rồi nhé

27 tháng 5 2017

b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)

\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được: 

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)

=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)

=>Pmax=3/4 <=> x=y=z=1/3

24 tháng 4 2018

áp dụng bất đẳng thức cosi

\(\frac{a^2}{b^3}+\frac{1}{a}+\frac{1}{a}\ge3\sqrt[3]{\frac{a^2}{b^3}\cdot\frac{1}{a}\cdot\frac{1}{a}}=3\cdot\frac{1}{b}\)

đoạn tiếp bạn tự làm nha

12 tháng 3 2018

2.

a, Có : (a+b+c).(1/a+1/b+1/c)

>= \(3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}\)

   = 9

=> ĐPCM

Dấu "=" xảy ra <=> a=b=c > 0

12 tháng 3 2018

2.

b, Xét : 2(a+b+c).(1/a+b + 1/b+c + 1/c+a) >= 9 ( theo bđt ở câu a đã c/m )

<=> (a+b+c).(1/a+b + 1/b+c + 1/c+a) >= 9/2

<=> a/b+c + b/c+a + c/a+b + 3 >= 9/2

<=> a/b+c + b/c+a + c/a+b >= 9/3 - 3 = 3/2

=> ĐPCM

Dấu "=" xảy ra <=> a=b=c > 0

21 tháng 4 2020

ta có

\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\left(AM-GM\right)\)

tương tự ta có

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\left(a+b\ge+c\right)-\frac{1}{2}\left(ab+bc+ca\right)\ge\frac{3}{2}\)

do \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=3\)