Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a+b+c=0\Rightarrow a+b=-c;a+c=-b;b+c=-a\)
ta có:
\(Q=\frac{ab}{\left(a^2-c^2\right)+b^2}+\frac{bc}{\left(b^2-a^2\right)+c^2}+\frac{ac}{\left(c^2-b^2\right)+a^2}\)
\(=\frac{ab}{\left(a-c\right)\left(a+c\right)+b^2}+\frac{bc}{\left(b-a\right)\left(b+a\right)+c^2}+\frac{ac}{\left(c-b\right)\left(c+b\right)+a^2}\)
\(=\frac{ab}{-b\left(a-c\right)+\left(-b\right)^2}+\frac{bc}{-c\left(b-a\right)+\left(-c\right)^2}+\frac{ac}{-a\left(c-b\right)+\left(-a\right)^2}\)
\(=\frac{ab}{-b\left(a-c-b\right)}+\frac{bc}{-c\left(b-a-c\right)}+\frac{ac}{-a\left(c-b-a\right)}\)
\(=\frac{ab}{-\left(a-\left(c+b\right)\right)}+\frac{bc}{-\left(b-\left(a+c\right)\right)}+\frac{ac}{-\left(c-\left(b+a\right)\right)}=\frac{ab}{-\left(a--a\right)}+\frac{bc}{-\left(b--b\right)}+\frac{ac}{-\left(c--c\right)}\)
\(=\frac{ab}{-2a}+\frac{bc}{-2b}+\frac{ac}{-2c}=\frac{b}{-2}+\frac{c}{-2}+\frac{a}{-2}=\frac{b+c+a}{-2}=\frac{0}{-2}=0\)
vậy Q=0
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Leftrightarrow ab+bc+ca=0\)
Theo đề bài ta có
\(M=\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=\frac{b^3c^3+a^3c^3+a^3b^3}{a^2b^2c^2}=\frac{b^3c^3+a^3c^3+a^3b^3-3a^2b^2c^2+3^2b^2c^2}{a^2b^2c^2}\)
\(=\frac{\left(ab+bc+ca\right)\left(a^2b^2+b^2c^2+c^2a^2-a^2bc-ab^2c-abc^2\right)+3a^2b^2c^2}{a^2b^2c^2}=3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
a + b + c = 0
=> a3 + b3 + c3 = 3abc (Tự chứng minh nhé bạn, nếu không chứng minh được thì bình luận nhé!)
Ta có:
\(P=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}\\ P=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}\\ P=\frac{1}{abc}\left(a^3+b^3+c^3\right)\\ P=\frac{1}{abc}.3abc\\ P=3\)
Lời giải:
Vì $a+b+c=0\Rightarrow a+b=-c$. Khi đó
\(P=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=\frac{a^3+b^3+c^3}{abc}=\frac{(a+b)^3-3ab(a+b)+c^3}{abc}\)
\(=\frac{(-c)^3-3ab(-c)+c^3}{abc}=\frac{3abc}{abc}=3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì \(c^2+2\left(ab-ac-bc\right)=0\) nên :
\(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a^2+\left(a-c\right)^2+\left(c^2+2ab-2ac-2bc\right)}{b^2+\left(b-c\right)^2+\left(c^2+2ab-2ac-2bc\right)}\)
\(=\frac{2a^2+2c^2-4ac+2ab-2bc}{2b^2+2c^2-4bc+2ab-2ac}=\frac{\left(a-c\right)^2+b\left(a-c\right)}{\left(b-c\right)^2+a\left(b-c\right)}\)
\(=\frac{\left(a-c\right)\left(a-c+b\right)}{\left(b-c\right)\left(b-c+a\right)}=\frac{a-c}{b-c}\) \(\left(b\ne c,a+b\ne0\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Sửa đề: Cho \(a;b;c>0\). \(CMR:\)
\(\frac{a+b}{bc+a^2}+\frac{b+c}{ca+b^2}+\frac{c+a}{ab+c^2}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=\frac{ab+c}{\left(a+b\right)^2}.\frac{bc+a}{\left(b+c\right)^2}.\frac{ca+b}{\left(c+a\right)^2}\)
\(=\frac{ab+c\left(a+b+c\right)}{\left(a+b\right)^2}.\frac{bc+a\left(a+b+c\right)}{\left(b+c\right)^2}.\frac{ca+b\left(a+b+c\right)}{\left(c+a\right)^2}\)
\(=\frac{\left(c+a\right)\left(c+b\right)}{\left(a+b\right)^2}.\frac{\left(a+b\right)\left(a+c\right)}{\left(b+c\right)^2}.\frac{\left(b+a\right)\left(b+c\right)}{\left(c+a\right)^2}=1\)
Ta có: \(ab+bc+ac=0\) và \(abc\ne0\)
nên \(\frac{ab+bc+ac}{abc}=0\), tức là \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Nếu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) thì \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3.\frac{1}{a}.\frac{1}{b}.\frac{1}{c}=\frac{3}{abc}\)
(bạn tham khảo cách chứng minh tại link sau: http://olm.vn/hoi-dap/question/373691.html)
Do đó: \(A=\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^3}=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc.\frac{3}{abc}=3\)
với \(a,b,c\ne0\)
\(ab+bc+ca=0\)
\(\Leftrightarrow ab+bc=-ac\)
\(\Leftrightarrow a^3b^3+b^3c^3+3ab^2c\left(ab+bc\right)=-a^3c^{3 }\)
\(\Leftrightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
\(\Leftrightarrow\frac{a^3b^3+b^3c^3+c^3a^3}{a^2b^2c^2}=\frac{3a^2b^2c^2}{a^2b^2c^2}\)
\(\Leftrightarrow A=3\)