Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
khong thuc hien phep tinh hay cm rang A chia het cho B biet rang
A=(x+1)(x+3)(x+5)(x+7)+15 va B = x+6
\(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(A=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)
\(A=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt \(a=x^2+8x+11\)
\(\Rightarrow A=\left(a-4\right)\left(a+4\right)+15\)
\(\Leftrightarrow A=a^2-16+15\)
\(\Leftrightarrow A=a^2-1\)
Thay a vào A ( :v ) ta có :
\(A=\left(x^2+8x+11\right)^2-1\)
\(A=\left(x^2+8x+11+1\right)\left(x^2+8x+11-1\right)\)
\(A=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)
\(A=\left(x^2+2x+6x+12\right)\left(x^2+8x+10\right)\)
\(A=\left[x\left(x+2\right)+6\left(x+2\right)\right]\left(x^2+8x+10\right)\)
\(A=\left(x+6\right)\left(x+2\right)\left(x^2+8x+10\right)⋮x+6\left(đpcm\right)\)
ta có a^4 +b^4=((a^2+b^2)^2-2ab-ab)
=(((a+b)^2-2ab-2ab.ab
=-59
k biết đúng k
b: \(x^2+y^2=\left(x+y\right)^2-2xy=25-12=13\)
c: \(\left(x-y\right)^2=\left(x+y\right)^2-4xy=5^2-4\cdot6=1\)
=>x-y=1 hoặc x-y=-1
\(a+b=10\) và \(ab=4\)
1. Có: \(A=a^2+b^2=\left(a+b\right)^2-2ab=10^2-2.4=92\)
2. \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=10^3-3.4.10=880\)
3. \(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=92^2-2.4^2=8432\)
4. \(a^5+b^5=\left(a^2+b^2\right)\left(a^3+b^3\right)-a^2b^2\left(a+b\right)=92.880-4^2.10=80800\)
1: \(\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)
\(=a^3+b^3\)
2: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
Ta có : \(a+b+c=0\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3=3\times672=2016\)
a3 + b3 = (a + b)3 - 3a2b - 3ab2 = 53 - 3ab(a + b) = 125 - 3 x 6 x 5 = 125 - 90 = 35