Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài, ta có:
\(\frac{a}{b}=\frac{2,1}{2,8}\Rightarrow\frac{a}{2,1}=\frac{b}{2,8}\)
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2,1}=\frac{b}{2,8}=\frac{5a-4b}{5.2,1-4.2,8}=\frac{-1}{-0,7}=\frac{10}{7}\)
\(.\frac{a}{2,1}=\frac{10}{7}\Rightarrow a=3\)
\(.\frac{b}{2,8}=\frac{10}{7}\Rightarrow b=4\)
\(\Rightarrow a^2+b^2=3^2+4^2=9+16=25\)
cho mk nhé
Ta Có :
\(\frac{a}{b}=\frac{2,1}{2,7}=\frac{7}{9}\)
=> \(\frac{a}{b}=\frac{7}{9}\Rightarrow\frac{a}{7}=\frac{b}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{7}-\frac{b}{9}=\frac{5a-4b}{35-36}=\frac{-1}{-1}=1\)
=> \(\frac{a}{7}=1\Rightarrow a=7\)
=> \(\frac{b}{9}=1\Rightarrow b=9\)
=> (a - b)2 = (9 - 7)2 = 22 = 4
Bài làm :
Ta có :
\(\frac{a}{b}=\frac{2,1}{2,7}=\frac{7}{9}\)
\(\Rightarrow\frac{a}{7}=\frac{b}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ; ta có :
\(\frac{a}{7}-\frac{b}{9}=\frac{5a-4b}{35-36}=\frac{-1}{-1}=1\)
\(\Rightarrow\orbr{\begin{cases}\frac{a}{7}=1\Rightarrow a=7\\\frac{b}{9}=1\Rightarrow b=9\end{cases}}\)
\(\Rightarrow\left(a-b\right)^2=\left(7-9\right)^2=4\)
Giải:
Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\)
\(\Rightarrow a=2k,b=3k,c=4k\)
Ta có: \(\frac{a^2+b^2+2c^2}{a^2-4b^2+c^2}\)
\(=\frac{\left(2k\right)^2+\left(3k\right)^2+2\left(4k\right)^2}{\left(2k\right)^2-4\left(3k\right)^2+\left(4k\right)^2}\)
\(=\frac{2^2.k^2+3^2.k^2+2.4^2.k^2}{2^2.k^2-4.3^2.k^2+4^2.k^2}\)
\(=\frac{4.k^2+9.k^2+32.k^2}{4.k^2-36.k^2+16.k^2}\)
\(=\frac{k^2.\left(4+9+32\right)}{k^2.\left(4-36+16\right)}\)
\(=\frac{45}{-16}\)
\(A=\frac{a^2+b^2+2c^2}{a^2-4b^2+c^2}\)
Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\Rightarrow a=2k;b=3k;c=4k\)
Suy ra \(A=\frac{\left(2k\right)^2+\left(3k\right)^2+2\left(4k\right)^2}{\left(2k\right)^2-4\left(3k\right)^2+\left(4k\right)^2}=\frac{4k^2+9k^2+2\cdot16k^2}{4k^2-4\cdot9k^2+16k^2}\)
\(=\frac{k^2\left(4+9+32\right)}{k^2\left(4-36+16\right)}=\frac{45}{-16}=-\frac{45}{16}\)
lấy 100 +1 ,99 +2 , 3+98 .VẬY MỖI CẶP SỐ ĐỀU CO TỔNG LÀ 101.........VÌ TỪ 1 ... 100 ĐỀU CÓ 50 CẶP NHƯ VẬY , TA LẤY 101x50 =5050
\(\dfrac{a+4b-c}{c}=\dfrac{c+4a-b}{b}=\dfrac{b+4c-a}{a}\\ \Rightarrow\dfrac{a+4b+c}{c}=\dfrac{c+4a+b}{b}=\dfrac{b+4c+a}{a}\\ =\dfrac{6\left(a+b+c\right)}{a+b+c}=6\\ \Rightarrow\dfrac{1}{a+b+c}=6\\ \Rightarrow a+b+c=\dfrac{1}{6}\)
Tới này dễ rồi
!!
\(a^2-2a+1+b^2-4b+4=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-2\right)^2=0\)
=>a=1 và b=2
\(a^{27}+b^2+2022=1^{27}+2^2+2022=2022+4+1=2027\)
Có \(\frac{a}{b}\)= \(\frac{2,1}{2,7}\)=\(\frac{7}{9}\)
=> \(\frac{a}{7}\)= \(\frac{b}{9}\)
=> \(\frac{5a}{35}\)= \(\frac{4b}{36}\)mà 5a - 4b = -1
=> \(\frac{5a}{35}\)= \(\frac{4b}{36}\)= \(\frac{5a-4b}{35-36}\)= \(\frac{-1}{-1}\)= 1
=> a = 1 . 35 : 5= 7
=> b= 1 . 36 : 4 = 9
Vậy (a-b)2= (7-9)2 = (-2)2 = 4
Chúc bạn học tốt!