Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bdtd quen thuộc :
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Chứng minh bđt nha ( quên mất )
Áp dụng bđt Cauchy :
\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{cases}}\)
Nhân từng vế của 2 bđt ta được đpcm
Dấu "=" khi \(a=b=c\)
a)A=x(x+1)(x+2)(x+3)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)\)
Đặt \(t=x^2+3x\) ta đc:
\(t\left(t+2\right)\)\(=t^2+2t+1-1\)
\(=\left(t+1\right)^2-1\ge-1\)
Dấu = khi \(t=-1\Rightarrow x^2+3x=-1\)\(\Rightarrow\)\(x=\frac{-3\pm\sqrt{5}}{2}\)
Vậy MinA=-1 khi \(x=\frac{-3\pm\sqrt{5}}{2}\)
b)\(B=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Với a,b,c dương ta áp dụng Bđt Cô si 3 số:
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Dấu = khi a=b=c
Vậy MinB=9 khi a=b=c
c)\(C=a^2+b^2+c^2\)
Áp dụng Bđt Bunhiacopski 3 cặp số ta có:
\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(1a+1b+1c\right)^2=\left(\frac{3}{2}\right)^2=\frac{9}{4}\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge\frac{9}{4}\)
\(\Rightarrow a^2+b^2+c^2\ge\frac{3}{4}\)
\(\Rightarrow C\ge\frac{3}{4}\)
Dấu = khi \(a=b=c=\frac{1}{2}\)
Vậy MinC=\(\frac{3}{4}\) khi \(a=b=c=\frac{1}{2}\)
\(\dfrac{a^4}{\left(b-1\right)^3}+\dfrac{256}{81}\left(b-1\right)+\dfrac{256}{81}\left(b-1\right)+\dfrac{256}{81}\left(b-1\right)\ge4\sqrt[4]{\dfrac{a^4.256^3.\left(b-1\right)^3}{81^3\left(b-1\right)^3}}=\dfrac{256a}{27}\)
\(\dfrac{b^4}{\left(a-1\right)^3}+\dfrac{256}{81}\left(a-1\right)+\dfrac{256}{81}\left(a-1\right)+\dfrac{256}{81}\left(a-1\right)\ge\dfrac{256b}{27}\)
Cộng vế với vế:
\(P+\dfrac{256}{27}\left(a+b\right)-\dfrac{512}{27}\ge\dfrac{256}{27}\left(a+b\right)\)
\(\Rightarrow P\ge\dfrac{512}{27}\)
Dấu "=" xảy ra khi \(a=b=4\)
\(A=a^3-b^3-ab=\left(a-b\right)\left(a^2+ab+b^2\right)-ab\)
\(=a^2+ab+b^2-ab=a^2+b^2\)
Do \(a-b=1\Rightarrow b=a-1\)
\(\Rightarrow A=a^2+\left(a-1\right)^2=a^2+a^2-2a+1=2a^2-2a+1\)
\(=\left(2a^2-2a+\frac{1}{2}\right)+\frac{1}{2}=2\left(a^2-a+\frac{1}{4}\right)+\frac{1}{2}=2\left(a-\frac{1}{2}\right)^2+\frac{1}{2}\)
Ta thấy \(2\left(a-\frac{1}{2}\right)^2\ge0\forall a\Rightarrow A=2\left(a-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall a\) có GTNN là \(\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=\frac{1}{2}\Rightarrow\frac{1}{2}-b=1\Rightarrow b=\frac{1}{2}-1=-\frac{1}{2}\)
Vậy \(A_{min}=\frac{1}{2}\) tại \(a=\frac{1}{2};b=-\frac{1}{2}\)
a2(b+c)2+5bc+b2(a+c)2+5ac≥4a29(b+c)2+4b29(a+c)2=49(a2(1−a)2+b2(1−b)2)(vì a+b+c=1)
a2(1−a)2−9a−24=(2−x)(3x−1)24(1−a)2≥0(vì )<a<1)
⇒a2(1−a)2≥9a−24
tương tự: b2(1−b)2≥9b−24
⇒P⩾49(9a−24+9b−24)−3(a+b)24=(a+b)−94−3(a+b)24.
đặt t=a+b(0<t<1)⇒P≥F(t)=−3t24+t−94(∗)
Xét hàm (∗) được: MinF(t)=F(23)=−19
⇒MinP=MinF(t)=−19.dấu "=" xảy ra khi a=b=c=13
Ta có : \(\frac{a^3}{1+b}+\frac{1+b}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{a^3\left(1+b\right)}{8\left(1+b\right)}}=\frac{3}{2}a\)
\(\frac{b^3}{1+a}+\frac{1+a}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{b^3}{1+a}.\frac{1+a}{4}.\frac{1}{2}}=\frac{3}{2}b\)
Cộng các vế tương ứng lại ta được :
\(\frac{a^3}{1+b}+\frac{b^3}{1+a}+\frac{1}{4}\left(a+b\right)+\frac{3}{2}\ge\frac{3}{2}\left(a+b\right)\)
\(\Leftrightarrow\frac{a^3}{1+b}+\frac{b^3}{1+a}\ge\frac{5}{4}\left(a+b\right)-\frac{3}{2}\ge\frac{5}{4}.2\sqrt{ab}-\frac{3}{2}=1\)
Do đó \(P\ge1\)
Dấu \("="\) xảy ra \(\Leftrightarrow a=b=1\)
\(a+b=1\ge2\sqrt{ab}\Rightarrow-ab\ge\frac{1}{4}\)
\(A=a^3+b^3=\left(a+b\right)\left(\left(a+b\right)^2-3ab\right)=1-3ab\ge1+\frac{3}{4}=\frac{7}{4}\)
A min = 7/4 khi a=b = 1/2
a3+b3=(a+b)(a2-ab+b2)=1*(a2-ab+b2)=a2+b2-ab
Ta có: a2>=0(với mọi a)
b2>=0(với mọi b)
=>a2+b2>=0(với mọi a,b)
=>a2+b2-ab>=-ab(với mọi a,b)
hay a3+b3>=-ab
Do đó, GTNN của a3+b3 là -ab